150 research outputs found

    Electrostatics in the Stability and Misfolding of the Prion Protein: Salt Bridges, Self-Energy, and Solvation

    Full text link
    Using a recently developed mesoscopic theory of protein dielectrics, we have calculated the salt bridge energies, total residue electrostatic potential energies, and transfer energies into a low dielectric amyloid-like phase for 12 species and mutants of the prion protein. Salt bridges and self energies play key roles in stabilizing secondary and tertiary structural elements of the prion protein. The total electrostatic potential energy of each residue was found to be invariably stabilizing. Residues frequently found to be mutated in familial prion disease were among those with the largest electrostatic energies. The large barrier to charged group desolvation imposes regional constraints on involvement of the prion protein in an amyloid aggregate, resulting in an electrostatic amyloid recruitment profile that favours regions of sequence between alpha helix 1 and beta strand 2, the middles of helices 2 and 3, and the region N-terminal to alpha helix 1. We found that the stabilization due to salt bridges is minimal among the proteins studied for disease-susceptible human mutants of prion protein

    Minimal distance transformations between links and polymers: Principles and examples

    Full text link
    The calculation of Euclidean distance between points is generalized to one-dimensional objects such as strings or polymers. Necessary and sufficient conditions for the minimal transformation between two polymer configurations are derived. Transformations consist of piecewise rotations and translations subject to Weierstrass-Erdmann corner conditions. Numerous examples are given for the special cases of one and two links. The transition to a large number of links is investigated, where the distance converges to the polymer length times the mean root square distance (MRSD) between polymer configurations, assuming curvature and non-crossing constraints can be neglected. Applications of this metric to protein folding are investigated. Potential applications are also discussed for structural alignment problems such as pharmacophore identification, and inverse kinematic problems in motor learning and control.Comment: Submitted to J. Phys.:Condens. Matte

    A systematically coarse-grained model for DNA, and its predictions for persistence length, stacking, twist, and chirality

    Full text link
    We introduce a coarse-grained model of DNA with bases modeled as rigid-body ellipsoids to capture their anisotropic stereochemistry. Interaction potentials are all physicochemical and generated from all-atom simulation/parameterization with minimal phenomenology. Persistence length, degree of stacking, and twist are studied by molecular dynamics simulation as functions of temperature, salt concentration, sequence, interaction potential strength, and local position along the chain, for both single- and double-stranded DNA where appropriate. The model of DNA shows several phase transitions and crossover regimes in addition to dehybridization, including unstacking, untwisting, and collapse which affect mechanical properties such as rigidity and persistence length. The model also exhibits chirality with a stable right-handed and metastable left-handed helix.Comment: 30 pages, 20 figures, Supplementary Material available at http://www.physics.ubc.ca/~steve/publications.htm
    • …
    corecore