9 research outputs found

    Antioxidative Molecules in Human Milk and Environmental Contaminants

    Get PDF
    Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions

    Antidepressant treatment is associated with epigenetic alterations of Homer1 promoter in a mouse model of chronic depression

    Get PDF
    Background: Understanding the neurobiology of depression and the mechanism of action of therapeutic measures is currently a research priority. We have shown that the expression of the synaptic protein Homer1a correlates with depression-like behavior and its induction is a common mechanism of action of different antidepressant treatments. However, the mechanism of Homer1a regulation is still unknown. Methods: We combined the chronic despair mouse model (CDM) of chronic depression with different antidepressant treatments. Depression-like behavior was characterized by forced swim and tail suspension tests, and via automatic measurement of sucrose preference in IntelliCage. The Homer1 mRNA expression and promoter DNA methylation were analyzed in cortex and peripheral blood by qRT-PCR and pyrosequencing. Results: CDM mice show decreased Homer1a and Homer1b/c mRNA expression in cortex and blood samples, while chronic treatment with imipramine and fluoxetine or acute ketamine application increases their level only in the cortex. The quantitative analyses of the methylation of 7 CpG sites, located on the Homer1 promoter region containing several CRE binding sites, show a significant increase in DNA methylation in the cortex of CDM mice. In contrast, antidepressant treatments reduce the methylation level. Limitations: Homer1 expression and promotor methylation were not analyzed in different blood cell types. Other CpG sites of Homer1 promoter should be investigated in future studies. Our experimental approach does not distinguish between methylation and hydroxymethylation. Conclusions: We demonstrate that stress-induced depression-like behavior and antidepressant treatments are associated with epigenetic alterations of Homer1 promoter, providing new insights into the mechanism of antidepressant treatment

    In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered lxra DNA methylation

    Get PDF
    SummaryObesity and type 2 diabetes have a heritable component that is not attributable to genetic factors. Instead, epigenetic mechanisms may play a role. We have developed a mouse model of intrauterine growth restriction (IUGR) by in utero malnutrition. IUGR mice developed obesity and glucose intolerance with aging. Strikingly, offspring of IUGR male mice also developed glucose intolerance. Here, we show that in utero malnutrition of F1 males influenced the expression of lipogenic genes in livers of F2 mice, partly due to altered expression of Lxra. In turn, Lxra expression is attributed to altered DNA methylation of its 5′ UTR region. We found the same epigenetic signature in the sperm of their progenitors, F1 males. Our data indicate that in utero malnutrition results in epigenetic modifications in germ cells (F1) that are subsequently transmitted and maintained in somatic cells of the F2, thereby influencing health and disease risk of the offspring

    Maternal Diabetes Leads to Unphysiological High Lipid Accumulation in Rabbit Preimplantation Embryos

    Get PDF
    According to the "developmental origin of health and disease" hypothesis, the metabolic set points of glucose and lipid metabolism are determined prenatally. In the case of a diabetic pregnancy, the embryo is exposed to higher glucose and lipid concentrations as early as during preimplantation development. We used the rabbit to study the effect of maternal diabetes type 1 on lipid accumulation and expression of lipogenic markers in preimplantation blastocysts. Accompanied by elevated triglyceride and glucose levels in the maternal blood, embryos from diabetic rabbits showed a massive intracellular lipid accumulation and increased expression of fatty acid transporter 4, fatty acid-binding protein 4, perilipin/adipophilin, and maturation of sterol-regulated element binding protein. However, expression of fatty acid synthase, a key enzyme for de novo synthesis of fatty acids, was not altered in vivo. During a short time in vitro culture of rabbit blastocysts, the accumulation of lipid droplets and expression of lipogenic markers were directly correlated with increasing glucose concentration, indicating that hyperglycemia leads to increased lipogenesis in the preimplantation embryo. Our study shows the decisive effect of glucose as the determining factor for fatty acid metabolism and intracellular lipid accumulation in preimplantation embryos

    Individualized lipid-lowering therapy to further reduce residual cardiovascular risk

    Get PDF
    Hypercholesterolemia is a major risk factor for cardiovascular diseases. Serum cholesterol concentrations are regulated by enteral absorption, biliary secretion, and hepatic synthesis. Statins inhibit the rate limiting enzyme of cholesterol synthesis, HMG-CoA-reductase, and reduce serum cholesterol concentrations as well as cardiovascular morbidity and mortality. Some studies indicate that patients with high baseline cholesterol absorption may show only a small response to statin treatment in terms of cholesterol lowering. Data from genetic association studies and from the IMPROVE-IT trial show that reducing intestinal cholesterol absorption via NCP1L1 further reduces cardiovascular risk. However, some patients do not attain LDL-cholesterol targets on combination therapy. For these patients PCSK9-antibody treatment and lipid-apheresis are options to be considered. This article reviews the current literature on this issue and suggests 'individualized lipid-lowering therapy' as an approach to optimize and personalize lipid-lowering treatment of patients with hypercholesterolemia to further reduce residual cardiovascular risk. (C) 2016 Elsevier Ltd. All rights reserved

    Placental insufficiency contributes to fatty acid metabolism alterations in aged female mouse offspring

    Get PDF
    Intrauterine growth restriction (IUGR) is an accepted risk factor for metabolic disorders in later life, including obesity and type 2 diabetes. The level of metabolic dysregulation can vary between subjects and is dependent on the severity and the type of IUGR insult. Classical IUGR animal models involve nutritional deprivation of the mother or uterine artery ligation. The latter aims to mimic a placental insufficiency. which is the most frequent cause of IUGR. In this study, we investigated whether IUGR attributable to placental insufficiency impacts the glucose and lipid homeostasis at advanced age. Placental insufficiency was achieved by deletion of the transcription factor AP-2y (Tfap2c), which serves as one of the major trophoblast differentiation regulators. TdelT-IUGR mice were obtained by crossing mice with a floxed Tfap2c allele and mice with Cre recombinase under the control of the Tpbpa promoter. In advanced adulthood (9-12 mo), female and male IUGR mice are respectively 20% and 12% leaner compared with controls. At this age. IUGR mice have unaffected glucose clearance and lipid parameters (cholesterol, triglycerides, and phospholipids) in the liver. However, female IUGR mice have increased plasma free fatty acids (+87%) compared with controls. This is accompanied by increased mRNA levels of fatty acid synthase and endoplasmic reticulum stress markers in white adipose tissue. Taken together. our results suggest that IUGR by placental insufficiency may lead to higher lipogenesis in female mice in advanced adulthood, at least indicated by greater Fasn expression. This effect was sex specific for the aged IUGR females

    Mid-gestation low-dose LPS administration results in female-specific excessive weight gain upon a western style diet in mouse offspring

    Get PDF
    Gestational complications, including preeclampsia and gestational diabetes, have long-term adverse consequences for offspring's metabolic and cardiovascular health. A low-grade systemic inflammatory response is likely mediating this. Here, we examine the consequences of LPS-induced gestational inflammation on offspring's health in adulthood. LPS was administered to pregnant C57Bl/6J mice on gestational day 10.5. Maternal plasma metabolomics showed oxidative stress, remaining for at least 5 days after LPS administration, likely mediating the consequences for the offspring. From weaning on, all offspring was fed a control diet; from 12 to 24 weeks of age, half of the offspring received a western-style diet (WSD). The combination of LPS-exposure and WSD resulted in hyperphagia and increased body weight and body fat mass in the female offspring. This was accompanied by changes in glucose tolerance, leptin and insulin levels and gene expression in liver and adipose tissue. In the hypothalamus, expression of genes involved in food intake regulation was slightly changed. We speculate that altered food intake behaviour is a result of dysregulation of hypothalamic signalling. Our results add to understanding of how maternal inflammation can mediate long-term health consequences for the offspring. This is relevant to many gestational complications with a pro-inflammatory reaction in place

    A New Enzyme-linked Sorbent Assay (ELSA) to Quantify Syncytiotrophoblast Extracellular Vesicles in Biological Fluids

    No full text
    ProblemThe pregnancy-associated disease preeclampsia is related to the release of syncytiotrophoblast extracellular vesicles (STBEV) by the placenta. To improve functional research on STBEV, reliable and specific methods are needed to quantify them. However, only a few quantification methods are available and accepted, though imperfect. For this purpose, we aimed to provide an enzyme-linked sorbent assay (ELSA) to quantify STBEV in fluid samples based on their microvesicle characteristics and placental origin. Method of StudyEx vivo placenta perfusion provided standards and samples for the STBEV quantification. STBEV were captured by binding of extracellular phosphatidylserine to immobilized annexin V. The membranous human placental alkaline phosphatase on the STBEV surface catalyzed a colorimetric detection reaction. Results and ConclusionThe described ELSA is a rapid and simple method to quantify STBEV in diverse liquid samples, such as blood or perfusion suspension. The reliability of the ELSA was proven by comparison with nanoparticle tracking analysis
    corecore