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Débora Martı́nez,1 Thais Pentinat,1 Sı́lvia Ribó,1 Christian Daviaud,2 Vincent W. Bloks,3 Judith Cebrià,1
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SUMMARY

Obesity and type 2 diabetes have a heritable com-
ponent that is not attributable to genetic factors.
Instead, epigenetic mechanisms may play a role.
We have developed a mouse model of intrauterine
growth restriction (IUGR) by in utero malnutrition.
IUGR mice developed obesity and glucose intoler-
ance with aging. Strikingly, offspring of IUGR male
mice also developed glucose intolerance. Here, we
show that in utero malnutrition of F1 males influ-
enced the expression of lipogenic genes in livers of
F2 mice, partly due to altered expression of Lxra. In
turn, Lxra expression is attributed to altered DNA
methylation of its 50 UTR region. We found the
same epigenetic signature in the sperm of their pro-
genitors, F1 males. Our data indicate that in utero
malnutrition results in epigenetic modifications in
germ cells (F1) that are subsequently transmitted
and maintained in somatic cells of the F2, thereby
influencing health and disease risk of the offspring.

INTRODUCTION

Complex noncommunicable diseases, such as obesity, type 2

diabetes, or cardiovascular disease, have a heritable component

that is not entirely attributable to genetic variation (Gluckman

et al., 2007). Instead, nongenomicmechanisms, including epige-

netics and mechanisms related to parental physiology or

behavior, may play an additional role in mediating inheritance

of disease risk (Youngson and Whitelaw, 2008). Increasing evi-

dence suggests that environmental factors are relevant in influ-

encing the inheritance of disease risk, especially when occurring

during early stages of development, such as the fetal and/or
C

neonatal periods. Among early environmental exposures, nutri-

tion plays a key role predisposing to type 2 diabetes, not only

to exposed individuals, but also to their offspring and, in a few

striking examples, their grand-offspring (Patti, 2013). Offspring

of people exposed to malnutrition in utero have increased

prevalence of cardiovascular disease and type 2 diabetes risk

(Painter et al., 2008; Veena et al., 2007; Veenendaal et al.,

2013; Walker et al., 1998). Likewise, increased grand-paternal

food supply during the prepubertal growth period augmented

the risk of cardiovascular and diabetes-related death in their

grandchildren (Bygren et al., 2001; Kaati et al., 2002; Pembrey

et al., 2006). In agreement, in rodent models, nutritional imbal-

ance during fetal and/or early neonatal development also

increased the risk of obesity, glucose intolerance, insulin resis-

tance, and type 2 diabetes in the following generation (Benyshek

et al., 2006; Burdge et al., 2007, 2011; Dunn and Bale, 2009,

2011; Jimenez-Chillaron et al., 2009; King et al., 2013; Pentinat

et al., 2010; Zambrano et al., 2006).

It has been proposed that transmission of such environmen-

tally acquired phenotypes may be mediated by epigenetic

mechanisms, which is conceptually termed as transgenerational

epigenetic inheritance (Gluckman et al., 2007). This refers to the

transmission of a specific phenotype to the next generation

offspring via epigenetic modifications in the germline (Daxinger

and Whitelaw, 2012). Yet, to really ascertain transgenerational

epigenetic inheritance, the phenotypic changes should be

studied up to the third-generation offspring (F3) (Figure S1 avail-

able online) (Jirtle and Skinner, 2007; Skinner, 2008). The reason

is that when an F0 gestating mother is exposed to an environ-

mental challenge, her embryos/fetuses (F1) and the already

developing germline (that will give rise to the F2) are also directly

exposed. This is what some authors define as a multigenera-

tional effect, rather than a transgenerational effect. Hence, for

accuracy purposes, we will maintain this conceptual distinction

in this article.

In addition, to further evaluate whether epigenetic mecha-

nismsmediate a specific transgenerational (or multigenerational)
ell Metabolism 19, 941–951, June 3, 2014 ª2014 Elsevier Inc. 941
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Figure 1. The Expression of Lipogenic Genes Is Altered in Livers from IUGR-F2 Male Mice

(A) Breeding strategy to generate the first- and second-generation offspring.

(B) Heat map including the statistically significantly expressed genes that belong to the lipid biosynthetic process Gene Ontology. The genes that regulate TAG

synthesis from citrate are highlighted in red.

(C) Lipid biosynthetic pathway. The genes that appeared differentially expressed in the microarray are highlighted in red.

(D) Gene expression (qPCR) of genes from the lipid biosynthesis and free fatty acid oxidation pathways. Values in are mean ± SEM. N, C-F2R 8; IUGR-F2R 8.

*p < 0.05; **p < 0.01, Student’s t test.

(E) Hierarchical structure of the transcription factors that regulate the lipid biosynthesis: Srebf1, Lxra, and Rxra.

(F) Gene expression (qPCR) analysis of the transcription factors that regulate the lipid biosynthetic process.

Values are mean ± SEM. n, C-F2 R 8; IUGR-F2 R 8. *p < 0.05; **p < 0.01, Student’s t test. See also Table S1 and Figures S1 and S2.
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effect, it is important to distinguish whether the inheritance of

an environmentally acquired trait is transmitted through the

maternal or the paternal lineage. Maternal effects comprise a

plethora of conditions where, in addition to epigenetics, the

female physiology and/or behavior influence the physiology of

her own offspring, thereby perpetuating a phenotype across

generations (Ferguson-Smith and Patti, 2011). Paternal effects,

on the other hand, strongly implicate epigenetic mechanisms

via the germline. This is particularly clear in animal models where

males are removed from the cage after fertilization and do not

contribute to rearing their offspring.

We have previously developed a mouse model of fetal malnu-

trition-associated diabetes. Briefly, a 50% global caloric restric-

tion was imposed to pregnant females (F0) during the last week

of gestation (Jimenez-Chillaron et al., 2005). Offspring from

caloric-restricted females showed intrauterine growth restriction

(IUGR) and low birth weight. In analogy to observations in hu-

mans, IUGR-F1malemice developedmany features reminiscent

of the metabolic syndrome, including obesity, mild hyperglyce-

mia, and glucose intolerance by age 4–6 months. Strikingly,

deregulation of metabolism persisted in the next generation

offspring (IUGR-F2) through the paternal lineage (Jimenez-Chill-

aron et al., 2009).

In the present study, we tested the hypothesis that epigenetic

modifications, namely DNA methylation, contribute to the devel-
942 Cell Metabolism 19, 941–951, June 3, 2014 ª2014 Elsevier Inc.
opment of metabolic dysfunction in the second-generation

offspring through the paternal lineage. To evaluate this, we

analyzed global gene expression profile and specific DNA

methylation signatures in livers from IUGR-F2 mice. Second,

we determined whether the epigenetic signatures identified in

the liver were already present in the sperm of their progenitors

(IUGR-F1). Here, we show that in utero malnutrition alters the

patterns of DNA methylation of the Lxra locus in sperm samples

of IUGR-F1 males and liver samples of their offspring (IUGR-F2).

These data suggest that in utero undernutrition may reprogram

the epigenome of cells from the germline/mature gametes that

can be inherited into the next generation offspring, thereby influ-

encing health and disease risk.

RESULTS

In Utero Undernutrition Influences the Expression of
Lipogenic Genes in the Second-Generation Offspring
We determined the gene expression profile in liver samples from

second-generation offspring (GeneChip Affymetrix microarrays)

(Figure 1A). Despite the fact that IUGR-F2 mice were not

exposed to nutritional stress in utero, 172 genes were signifi-

cantly differentially expressed between IUGR-F2 and control-

F2 mice at q value % 0.05 (Table S1). The gene ontology term

with the highest enrichment score was the lipid biosynthetic



Table 1. Gene Ontology Terms with the Highest Significance of the Functional Clusters

Gene Ontology Term Category

Cluster Enrichment

Score Count % p value % FDR

0008610 Lipid biosynthetic process 2.979 8 8.421 0.00044 0.660

0006954 Inflammatory response 2.188 7 7.368 0.00076 1.124

0006085 Acetyl-CoA biosynthetic process 1.791 3 3.157 0.00034 0.507

0006959 Humoral immune response 1.457 4 4.210 0.00227 3.309

Up- and downregulated significant gene data sets were considered separately. FDR, false discovery rate.
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process (DAVID Bioinformatics Resources; Gene Ontology Tool)

(Table 1). Many genes included in this cluster are key players in

regulating triglyceride (TAG) biosynthesis from citrate, including

ATP citrate lyase (Acly), fatty acid synthase (Fasn), stearoyl CoA

desaturase 1 (Scd1), and elongation of very-long-chain fatty

acids protein 6 (Elovl6) (Figures 1B and 1C). Acetyl-CoA carbox-

ylase 1 and 2 (Acaca, Acacb), two other important players of

the lipogenic pathway (Figure 1C), showed a tendency to be

reduced in the microarray, although they did not reach statistical

significance (not shown). Next, we confirmed the microarray

data by qPCR in an extended set of samples (eight livers/group)

that included additional livers from sibling and nonsibling mice

(Figure 1D). Coordinated downregulation of lipogenic targets

was highly specific because expression of genes that regulate

free fatty acid oxidation was not globally altered (Figure 1D).

Lxra and Srebf1 Contribute to Regulate Expression of
Lipogenic Genes in IUGR-F2 Mice
De novo lipogenesis is regulated through a cascade of upstream

transcription factors, including the sterol regulatory element

binding transcription factor 1 (Srebf1), the liver X receptor-alpha

(official gene name, Nr1h3; alternate gene name, Lxra), and the

retinoid X receptor-alpha (Rxra) (Figure 1E). Srebf1 expression

was reduced by 70% in livers from IUGR-F2 male mice (Fig-

ure 1F). Likewise, Lxra was statistically downregulated, whereas

Rxra remained unaltered in IUGR-F2 livers (Figure 1F). Finally,

expression of transcription factors upstream of Lxra, including

the peroxisome proliferator-activated receptor alpha (Ppara),

the peroxisome proliferator-activated receptor gamma (Pparg),

and the hepatic nuclear factor 4 alpha (Hnf4a), was unaltered

(Figure S2). Collectively, these data support that reduced lipo-

genic gene expression can be explained, at least partly, by

altered expression of Lxra and Srebf1.

DNAMethylation of Lxra Is Altered in Liver Samples from
IUGR-F2 Mice
We hypothesized that the deregulated expression of Lxra

might, at least in part, be explained by altered epigenetic modi-

fications. We therefore measured DNA methylation patterns

in the 50 regulatory regions of the gene (Chr2: 91,194,917–

91,195,232; mm10). Two CpG islands (CGI) were identified in

the 50 proximal region of Lxra (EMBOSS Cpgplot software;

http://www.ebi.ac.uk/Tools/seqstats/emboss_cpgplot/) (Fig-

ures 2A and S3). The first one (CGI-A) spans from �63 to +43

based on the transcription start site (TSS), and the second one

(CGI-B) spans from +68 to +138, within the 50 UTR.
Quantitative DNA methylation analysis by pyrosequencing

showed that the methylation profile of the CGI-A was similar
C

among groups (Figure 2A). In contrast, the methylation levels

of the CpG sites 1, 2, 3, 5, and 6 of the CGI-B were statistically

reduced in liver samples from IUGR-F2 mice (Figure 2A). Like-

wise, overall methylation of the CGI-B was reduced as assessed

by themedian DNAmethylation level (Figure 2A). We additionally

measured the DNA methylation profile of Srebf1, the immediate

LXR downstream target, and Fasn, the rate-limiting enzyme of

the lipogenic pathway. We confirmed that both genes contain

a canonical CGI around the transcription start site (Figure S3).

The pattern of methylation of both genes was unaltered in livers

from IUGR-F2 mice (Figures 2B and 2C).

Lxra Methylation Is Already Altered in Sperm Samples
from IUGR-F1 Mice
The key question was to determine whether the altered methyl-

ation patterns of the Lxra locus were inherited from IUGR-F1

male mice through the gametes, or emerged secondarily as

IUGR-F2 mice developed metabolic dysfunction. To address

this, we determined CGI-B methylation in (1) sperm samples

from IUGR-F1 male mice, and (2) fetal liver (ED14.5) from

IUGR-F2 mice (Figure 3A). Strikingly, the epigenetic signature

that we detected in livers from adult IUGR-F2 mice was already

present in both tissues (Figures 3C and 3D). Even more, the CpG

sites 1, 3, and 5 were significantly hypomethylated in sperm-F1,

fetal liver-F2, and adult liver-F2 (Figure 3C). Again, this effect was

highly specific because the CGI-A remained unaltered in sperm-

F1 and fetal liver-F2 (Figures S4A–S4C). Likewise, DNA methyl-

ation in the promoter region of Fasn also remained unaltered in

sperm-F1 and fetal liver-F2 (data not shown).

Given that altered patterns of methylation were already pre-

sent in sperm samples, we analyzed whether they were also

detectable in other tissues of IUGR-F2 mice, including skeletal

muscle, white adipose tissue, and islet cells (Figure 3B). DNA

methylation patterns were altered in skeletal muscle but not in

white adipose tissue and in islet cells of IUGR-F2 mice (Figures

3E and 3F). These data suggest that there is a tissue-specific

postzygotic epigenetic reprogramming of the transmitted marks

in islets and adipose tissue.

Epigenetic Regulation of Lxra Expression
Next, we addressed whether the Lxra gene expression is truly

regulated by changes in DNA methylation or they just show a

positive association in our model. Therefore, we combined (1)

treatment of themouse hepatocyte cell line (Hepa1c) with 5-aza-

cytidine (5-AZA), and (2) chromatin immunoprecipitation assays

(ChIP) in vivo. 5-AZA depletes DNA methyltransferases in repli-

cating cells leading to DNA demethylation. We confirmed that

5-AZA reduced moderately Lxra DNA methylation (Figure 4A).
ell Metabolism 19, 941–951, June 3, 2014 ª2014 Elsevier Inc. 943
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Figure 2. Lxra DNA Methylation Is Altered in Liver Samples from IUGR-F2 Mice

(A) Lxra structure, detailing the CGIs in green. The line graphs represent the percentage of DNA methylation of individual CpG sites within the island

(pyrosequencing). The bar graph is the median of %DNA methylation for each region.

(B) Transcription start site and CGI for Srebf1. Line graph and bar graph represent the same conceptual information as in (A).

(C) Transcription Start Site and CGI for Fasn. Line graph and bar graph represent the same type of information as in (A) and (B).

Values are the mean ± SEM. n = 12 C-F2 and 12 IUGR-F2 mice. *p < 0.05, Student’s t test. See also Figures S1 and S3.
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In agreement with our in vivo data, 5-AZA also reduced Lxra gene

expression in a dose-dependent manner (Figure 4B). This effect

appeared to be specific for Lxra because 5-AZA reduced the

pattern of DNA methylation for Fasn (Figure 4C), but increased

its expression (Figure 4D).

The positive correlation between Lxra DNA methylation and

expression suggested that reduced methylation might be asso-

ciated to a combination of histone marks and/or transcription

factors that result in transcriptional repression of the gene.

ChIP-qPCR assays confirmed that indeed there was an enrich-

ment of repressive histone marks (H3K9me2, H3K27me3) at

the CGI-B in liver samples from IUGR-F2 mice (Figure 4E).

Conversely, levels of the active transcription mark histone

H3K4me1 were reduced in livers from IUGR-F2 mice (Figure 4E).

Furthermore, promoter analysis of the CGI-B (http://rvista.

dcode.org/) demonstrated consensus-binding sites for known

activators (PPARa, PPARg, HNF4a) and potential repressors of
944 Cell Metabolism 19, 941–951, June 3, 2014 ª2014 Elsevier Inc.
Lxra (Stat1, Stat3) (Figure 4F). As stated previously, expression

of Ppara, Pparg, and Hnf4a was similar in control-F2 and

IUGR-F2 mice (Figure S2). Likewise, expression of Stat1 and

Stat3 was comparable between groups (Figure S5). However,

Stat3 bound to the promoter region of Lxra was enriched in

IUGR-F2 mice (Figure 4E). In contrast, the percentage of Stat1

and PPARg bound to the island was similar in control-F2 and

IUGR-F2 livers.

We further confirmed that DNA methylation of Lxra influences

its regulatory properties. Vehicle- and AZA-treated Hepa1c cells

were incubated with insulin (that activates Lxra transcription),

rosiglitazone (a PPARg agonist), and TNF-a (that represses

Lxra through the activation of the Jak-Stat pathway) (Figure 5A).

Insulinmoderately increased Lxra transcription in vehicle-treated

Hepa1c cells (Figure 5B). This effect was lost in AZA-treated

cells. This outcome was specific to Lxra, because insulin in-

creased transcription of Fasn in both vehicle- and AZA-treated

http://rvista.dcode.org/
http://rvista.dcode.org/
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Figure 3. Altered Lxra Methylation Is Already Present in Sperm Samples from the Progenitors, IUGR-F1 Male Mice

(A) Multigenerational exposure to maternal undernutrition.

(B) Multigenerational transmission of epigenetic marks into somatic tissues: skeletal muscle, white adipose tissue, and islet cells.

(C) Percentage of DNA methylation (pyrosequencing) of Lxra in sperm samples from IUGR-F1 mice (C-F2 = 9 mice; IUGR-F2 = 14 mice) and liver samples of

IUGR-F2 fetuses from embryonic day ED14 (C-F2 = 8 mice; IUGR-F2 = 8 mice).

(D) Median DNA methylation for sperm-F1 and fetal liver-F2.

(E) Percentage of DNA methylation (pyrosequencing) of Lxra in skeletal muscle, adipose tissue, and islet cells from adult control-F2 and IUGR-F2 mice.

(F) Median DNAmethylation level for skeletal muscle (C-F2 = 6mice; IUGR-F2 = 8mice), adipose tissue (C-F2 = 8mice; IUGR-F2 = 6mice), and islet cells (C-F2 =

3 mice; IUGR-F2 = 9 mice).

Values are the mean ± SEM. ^p < 0.1, *p < 0.05, ***p < 0.001. Student’s t test. See also Figures S1 and S4.
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cells (Figure 5B). Likewise, rosiglitazone induced Lxra and Fasn

gene expression by more than 2-fold in the vehicle-treated cells

(Figure 5C). Strikingly, this effect was abolished for Lxra and

mildly impaired for Fasn in 5-AZA-treated cells. Finally, TNF-a

reduced Lxra expression more potently in AZA-treated cells

than in vehicle-treated hepatocytes (Figure 5D). Together, these

data suggest that changes in methylation of the CGI-B fine-tune

the normal physiologic regulation of the gene.

Impact of Lxra on Metabolism of IUGR-F2 Mice
Finally, we addressed whether deregulated Lxra expression

contributed to the development of metabolic dysfunction in the

mouse model. Lxra regulates both fatty acid and cholesterol

metabolism (Figure 6A). As previously shown, Lxra regulates
C

lipogenesis through transcriptional control of Srebf1 (Figures

1D and 1F). In agreement, hepatic de novo lipogenesis was

impaired in IUGR-F2 mice during a fasting refeeding test in vivo

(Figure 6B). Likewise, production of VLDL, as assessed by pro-

gressive accumulation of TAG after tyloxapol treatment, was

also impaired in IUGR-F2 mice (Figure 6C). Lxra also contributes

to the regulation of lipoprotein metabolism (Figure 6A). Accord-

ingly, expression of hepatic Apoa5 and Lpl was reduced in livers

from IUGR-F2 mice (Figure 6D). This can partly explain the

slight increase in serum TAG observed in adult IUGR-F2 mice

(Figure 6E).

Finally, Lxra regulates the transcriptional program of choles-

terol export from hepatocytes to HDL (Abca1, Abcg1) and to

bile (as cholesterol, Abcg5, Abcg8; conversion to bile acids,
ell Metabolism 19, 941–951, June 3, 2014 ª2014 Elsevier Inc. 945
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Figure 4. Promoter Lxra DNA Methylation Influences Lxra Gene Expression

(A) Quantification of Lxra DNA methylation (pyrosequencing) after 48 hr treatment with 5-azacytidine (5-AZA). The line graph represents the average DNA

methylation for each CpG site. The bar graph integrates the median DNA methylation of the entire island.

(B) Lxra gene expression (qPCR) after 48 hr treatment with 5-AZA or vehicle.

(C) Quantification of Fasn DNAmethylation (pyrosequencing) after 48 hr treatment with 5-AZA. The line graph and bar graph display the same information as in (A).

(D) Fasn expression (qPCR) after 48 hr treatment with 5-AZA or vehicle.

(E) ChIP-qPCR in vivo of liver samples from 4-month-old adult mice. The left panel includes ChIP from three histone marks (H3K4me, H3K9me2, H3K27me3) and

the right panel includes three relevant transcription factors (Stat1, Stat3, Pparg) (n, C-F2 = 4; IUGR-F2 = 4).

(F) Sequence analysis of the CGI-B. The blue and pink boxes indicate the consensus-binding sites for Stat1, Stat3, Pparg, and Hnf4a. The degree of conservation

with the human sequence is denoted in the figure. CpG dinucleotides are labeled in gray. Differentially methylated CpG sites are labeled with an asterisk.

See also Figure S5.
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Cyp7a1) (Figure 6A). We show that expression of Abca1 and

Abcg1 was slightly decreased although not significantly in

IUGR-F2 livers (Figure 6D). This change may contribute at least

to reduce cholesterol transport to HDL, which correlated with

reduced serum HDL cholesterol levels in IUGR-F2 mice

(Figure 6F). Finally, Cyp7a1 and Abcg5 were also reduced in

livers from IUGR-F2 mice (Figure 6D), potentially explaining the

slight accumulation of hepatic free cholesterol (Figure 6G). In

summary, we demonstrate that Lxra-dependent pathways are

moderately altered in IUGR-F2 mice and can potentially

contribute to deregulated metabolic function with aging.

DISCUSSION

Here, we show that in utero undernutrition in male mice influ-

ences the expression of lipogenic genes in the following-

generation offspring (F2), thereby increasing their risk for

metabolic syndrome. Deregulated lipogenic gene expression

in the liver can be explained, in part, by reduced expression

of the key transcription factor Lxra. In turn, altered Lxra

expression can be partially attributed to changes in DNA

methylation within its 50 UTR region. This epigenetic signature

was already present in sperm samples from their progenitors

(F1). Hence, our data strongly suggest that in utero malnutrition

alters patterns of DNA methylation in germ cells and/or mature

sperm that are subsequently transmitted and maintained in

somatic cells, thereby influencing health and disease risk in

the offspring.
946 Cell Metabolism 19, 941–951, June 3, 2014 ª2014 Elsevier Inc.
Other investigators have previously shown that nutritional

stress during early development, including low-protein diet,

high-fat feeding, and hyperglycemia, can alter DNA methylation

patterns in the following-generation offspring (Burdge et al.,

2007, 2011; Carone et al., 2010; Ng et al., 2010; Ding et al.,

2012; Fullston et al., 2013). It is arguable that these alterations

might be the product of epigenetic inheritance via the gametes

(Daxinger andWhitelaw, 2012). Yet, evidence of epigenetic alter-

ations in germ cells and/or mature gametes is so far not very

strong (Ferguson-Smith and Patti, 2011; Skinner, 2010). In addi-

tion, it could be possible that germline-mediated transmission of

phenotypic traits may be due to the combination of develop-

mental abnormalities and aberrant DNA alterations in germ cells,

rather than to the continuity of epigenetic marks between F1 and

F2 (Burdge et al., 2011).

In this context, our work strongly suggests transmission of

epigenetic marks through the gametes: the epigenetic signature

identified in the liver of IUGR-F2 adult mice is already present in

sperm samples from their fathers, IUGR-F1. These data consti-

tute, per se, evidence of the continuity of an epigenetic mark

between generations. Furthermore, we confirmed that the

methylation signature of the Lxra locus was also present in liver

samples of IUGR-F2 fetuses, well before they develop metabolic

alterations that may secondarily lead to epigenetic de novomod-

ifications (Jiménez-Chillarón et al., 2012). Therefore, the pres-

ence of the same signature in sperm of IUGR-F1 mice, liver of

IUGR-F2 fetuses, and liver of IUGR-F2 adults strongly support

transmission of the epigenetic mark through the male gametes
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Figure 5. Lxra Promoter Methylation Modu-

lates Gene Expression by Specific Tran-

scription Factors

(A) Transcriptional regulation of Lxra by insulin,

rosiglitazone, and TNF-a, through their specific

transcription factors (Ppara, Pparg, Stat1/3).

(B) Insulin-stimulated Lxra and Fasn expression

(qPCR) after treatment of Hepa1c cells with 5-AZA

or vehicle (A:A).

(C) Rosiglitazone-stimulated Lxra and Fasn ex-

pression (qPCR) after treatment of Hepa1c cells

with 5-AZA or vehicle (A:A).

(D) Tnfa-stimulated Lxra and Pparg repression

(qPCR) after treatment of Hepa1c cells with 5-AZA

or vehicle (A:A).

Values are the mean ± SEM. n = 8 AZA and 8

vehicle in (B)–(D). *p < 0.05, **p < 0.01. n.s., not

statistically significant. Student’s t test.
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rather than a de novo event (Burdge et al., 2011). In addition, if

the epigenetic marks in the sperm are truly inherited, they should

be present in other tissues as well. In accord, similar patterns of

DNA methylation were observed in skeletal muscle from adult

IUGR-F2 mice. Nevertheless, this pattern was not visible in two

other tissues of metabolic relevance, such as fat and islet cells.

This suggests that tissue-specific postnatal remodeling of DNA

methylation may occur. Indeed, this effect has been described

previously, suggesting that this process might be a common

event (Zeybel et al., 2012).

Evidence of epigenetic inheritance in mammals is very limited

(Jablonka and Raz, 2009). Indeed, this scarcity has generated an

open debate about whether this is a relevant biological process

or just a rare event (Grossniklaus et al., 2013) restricted to a

particular set of conditions, including (1) intracisternal A particles

(IAP) (Blewitt et al., 2006; Morgan et al., 1999; Rakyan et al.,

2003; Vasicek et al., 1997), (2) perinatal exposure to endocrine

disruptors (Anway et al., 2005; Guerrero-Bosagna et al., 2010;

Guerrero-Bosagna and Skinner, 2012), and more recently, (3)

hypomorphic mutations of the enzyme methionine synthase

reductase, which maintains folate and methionine cycles and,

hence, provision of methyl groups for DNA methylation (Padma-

nabhan et al., 2013). In this context, two recent reports (Zeybel

et al., 2012; Vassoler et al., 2013), together with ours, widen

above-mentioned panorama and show nongenomic transmis-

sion of complex phenotypes in rodents, likely through epigenetic

modifications. First, liver damage in male mice induced epige-

netic signatures that resulted in improved wound healing in the

offspring and the grand-offspring (Zeybel et al., 2012). Second,

self-administration of cocaine to male rats induced resistance

to cocaine in the following-generation offspring through epige-

netic reprogramming of the germline (Vassoler et al., 2013). It

has to be noted that in the previous examples, including ours,

nongenomic transmission of traits occurred in the context of

multigenerational setting (Figure S1) (Jirtle and Skinner, 2007;

Skinner, 2008): the F0 gestating mother, the F1 embryo/fetus,
Cell Metabolism 19, 941–
and its germline, which will give rise to

the F2, are exposed to the same environ-

mental cues during the same time. This

is conceptually relevant because in the
multigenerational framework inheritance of phenotypic traits

via the gametes might be partly mediated by mechanisms other

than epigenetics. However, it has to be emphasized that the

recognition that environmental cues may lead to the transmis-

sion of disease risk, either through epigenetic mechanisms or

not, is still extremely important because it has profound implica-

tions for human health at large.

Finally, epigenetic inheritance in mammals has not been ex-

tensively studied until recently. The reason is that from a mech-

anistic point of view it is well-established that genomes undergo

a massive epigenetic reprogramming during the gametogenesis

and the first postzygotic divisions. Thus, the epigenetic modifi-

cations existing in germ cells are erased. The goal of this process

is precisely to avoid inheritance of environmentally acquired

epigenetic marks. However, recent systematic genome-wide

mapping of epigenetic events occurring in germ cells has shown

that there are many regions that remain substantially methylated

in all stages of germ cell development until mature oocytes and

sperm (Hackett and Surani, 2013; Hackett et al., 2013; Seisen-

berger et al., 2012). These regions included primarily IAPs and,

importantly, a group of CGIs with variable degrees of stable

methylation. It is proposed that these specific islands could

mediate epigenetic inheritance across generations.

We show that the 50 UTR locus of Lxra is hypomethylated in

liver samples from IUGR-F2 mice. In agreement, altered DNA

methylation of Lxra has previously been described in another

model of prenatal nutritional stress (van Straten et al., 2010).

Low protein intake during gestation resulted in hypermethylation

of the promoter region of Lxra in the fetal liver from the offspring.

Together, both studies suggest that the 50 regulatory region of

Lxra is especially vulnerable to early nutritional stress. Alterna-

tively, it might be possible that changes in Lxra DNAmethylation

are accounted for by a bias in liver cell population. The liver is a

heterogeneous tissue formed by different cell types including he-

patocytes (60%), Kupffer cells (20%), lymphocytes (15%–20%),

stellate cells and oval cells (<1%), etc. It might, therefore, be
951, June 3, 2014 ª2014 Elsevier Inc. 947
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Figure 6. Altered Lxra Expression Influences FFA-Cholesterol Metabolism in IUGR-F2 Mice

(A) Targets of Lxra and their role on fatty acid and cholesterol metabolic pathways.

(B) Hepatic TAG content during the fast-to-refeeding transition (C-F2 R 3; IUGR-F2 R 4).

(C) VLDL production after intraperitoneal treatment with tyloxapol (C-F2 = 12; IUGR-F2 = 12).

(D) Hepatic gene expression analysis (qPCR) of genes that regulate lipoprotein synthesis, cholesterol transport, and transport to bile acids (C-F2 = 8; IUGR-F2 = 8).

(E) Serum triglyceride content in 4-month-old mice (C-F2 = 8; IUGR-F2 = 8).

(F) Serum HDL-cholesterol in 4-month-old mice (C-F2 = 15; IUGR-F2 = 16).

(G) Free cholesterol content in liver samples from 4-month-old mice (C-F2 = 6; IUGR-F2 = 12).

Values are the mean ± SEM. *p < 0.05. Student’s t test.
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possible that reported changes in methylation reflect, in part, a

shift in the abundance of these cell types. Although this possibil-

ity deserves further investigation, it has to be noted that in our

model the change in methylation is similar in magnitude and

direction in at least three independent tissues (sperm, liver, skel-

etal muscle). Hence, at this point, the possibility that cell type

composition accounts for differences in DNAmethylation across

several tissues is very unlikely.

In our model, Lxra expression and DNA methylation are posi-

tively correlated. Yet general consensus, primarily from the field

of cancer, points out that promoter methylation tends to corre-

late negatively with gene expression. Here, we show that treating

Hepa1c cells with 5-AZA resulted in progressive DNA demethy-

lation and concomitantly reduced Lxra gene expression. In addi-

tion, the methylation status of the CGI-B locus influenced the

physiological regulation of Lxra in response to insulin, Pparg,

and Tnfa. Together, these data confirm (1) that the methylation

state of the CGI-B contributes to the normal physiologic regula-

tion of the gene, (2) that small changes in methylation are enough

to influence gene expression, and (3) that methylation of the

50 UTR and expression of Lxra correlate positively. In agreement

with the last issue, many transcription factors are effectively able

to bind to methylated DNA and induce gene expression in a

methylation-dependent manner (Hu et al., 2013; Rönn et al.,

2013; Spruijt et al., 2013).

Furthermore, ChIP-qPCR data suggest that reduced DNA

methylation results in a combination of histone marks and tran-
948 Cell Metabolism 19, 941–951, June 3, 2014 ª2014 Elsevier Inc.
scription factors that are associated to repression of Lxra.

Indeed, repressive histone marks were enriched (H3K9me2,

H3K27me3), whereas active histone marks (H3K4me) were

reduced at the CGI-B of IUGR-F2 mice. Moreover, promoter

analysis of Lxra demonstrated consensus-binding sites for

known activators (PPARg, PPARg, HNF4a) and potential repres-

sors (STAT1, STAT3). We confirmed that, in livers from IUGR-F2

mice, there is a preferential although nonstatistical enrichment of

Stat3 bound to the CGI-B. Lack of significance could be due

to combined low N value and high interindividual variation. In

sum, we provide evidence that Lxra expression is influenced

by the DNA methylation patterns in the proximal promoter re-

gion, which allows the association of specific transcription fac-

tors and histones that ultimately determine the transcriptional

activity of the gene.

Lxra is involved in the control of cholesterol and fatty acid

metabolism (Tontonoz and Mangelsdorf, 2003). In hepatocytes,

Lxra regulates lipogenesis primarily by its binding and direct acti-

vation of the transcription factor Srebf1 (Repa et al., 2000),

which, in turn, activates the transcription of its downstream tar-

gets (Fasn, Scd1, and Acaca/b). On the other hand, Lxra also

controls several genes involved in cholesterol homeostasis,

including Cyp7a1, Abca1, Abcg1, Abcg5, and Abcg8 (Peet

et al., 1998; Repa and Mangelsdorf, 2000). In agreement, in

our model, reduced Lxra expression correlates with the expres-

sion of its downstream FFA and cholesterol target genes. The

effects of Lxra on FFA metabolism appeared more potent than
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those on cholesterol metabolism, because cholesterol target

genes were moderately reduced (between 5%–20%) and only

Abcg5, ApoA5, and Lpl reached significance.

The small reduction in Lxra expression is sufficient to alter liver

metabolism: moderated hypertriglyceridemia, increased VLDL

production, reduced HDL cholesterol, and augmented hepatic

free cholesterol levels. In agreement, heterozygous mice for

Lxra (Lxra+/�) also did show a mild effect in the expression of

its downstream targets and very little effect on hepatic TAG

and cholesterol homeostasis on a regular chow diet (Kalaany

et al., 2005; van der Veen et al., 2007). Notably, the metabolic

effects in our model (which shows a 20%–30% reduction in

Lxra expression) appear as striking as those in Lxra+/� mice

(where Lxra is reduced by 50%). This might be attributed to the

fact that (1) in our model additional alterations, other than Lxra,

might contribute to the whole phenotype, and (2) we are using

different strains that can have different sensitivity to Lxra dereg-

ulation. In summary, we provide evidence that deregulated

expression of Lxra contributes to alter FFA and cholesterol meta-

bolism in IUGR-F2 mice. This alteration can partially contribute

to the development of glucose intolerance and whole-body

metabolic dysfunction observed in the IUGR-F2 mice.

To conclude, we show evidence of the transmission of an

epigenetic modification, via the sperm, that is stably maintained

in somatic tissues (liver) of the offspring and that contributes, in

part, to the development of metabolic dysfunction in the second-

generation offspring. Our data suggest that transmission of envi-

ronmentally acquired epigenetic modifications may occur in

nature more frequently than previously expected. This is partic-

ularly relevant in humans where nongenomic transmission of

ancestral disease risk has been demonstrated in many popula-

tions. Therefore, better understanding of mechanismsmediating

such non-Mendelian forms of inheritance is clearly relevant to

design nutritional interventions aimed to prevent such effects

and improve health of the upcoming generations.

EXPERIMENTAL PROCEDURES

Animal Care and Experimental Design

Protocols were approved by theUniversitat de Barcelona Animal Care andUse

Committee. Eight-week-old ICR(CD-1) mice were purchased from Harlan

Laboratories. A single virgin female was mated with one nonsibling male. After

confirmation of pregnancy by vaginal plug (day 0.5), the male was removed

from the cage and the female was maintained individually throughout gesta-

tion. On pregnancy day 12.5, the females (F0) were randomly assigned to

either the control (C; 10 females) or the intrauterine growth restriction (IUGR;

13 females) groups (Figure 1A). Food intake of IUGR-F0 dams was restricted

to 50% compared with that consumed by C-F0 from day 12.5 until delivery.

After delivery, litter size was adjusted to eight pups to avoid metabolic drifts

due to nutrient availability during lactation. Offspring from C-F0 and IUGR-

F0 dams were designated as the first-generation offspring (C-F1 and IUGR-

F1) (Figure 1A). F1 pups were nursed freely and weaned at 3 weeks onto

standard chow (2014 Tekland Global, Harlan Iberica), provided ad libitum.

To generate the second-generation offspring (F2), eight C-F1 and seven

IUGR-F1 unrelated nonsibling males from two independent breedings were

mated at age 2 months with external control virgin females. Pregnant females

were not subjected to food restriction. At birth, F2 litters were adjusted to eight

pups per dam, and all mice had free access to standard chow at weaning.

In Vivo VLDL Production

Production of very-low-density lipoproteins in vivo was assessed by mea-

suring the progressive accumulation of TAG in serum of mice treated with
C

Tyloxapol (Sigma). Intraperitoneal injection of Tyloxapol (500 mg/kg) was per-

formed on conscious mice after 4 hr fast. Blood samples were obtained from

the tail vein at 0, 90, and 180 min after Tyloxapol administration.

Serum and Tissue TAG Metabolites

Triglycerides were measured using colorimetric methods in 2 ml serum sam-

ples (Biosystems). Hepatic lipids were extracted as described (Bligh and

Dyer, 1959). Commercially available kits for total and free cholesterol (DiaSys

Diagnostic Systems) and TAG (Roche Diagnostics) were used to determine the

lipid profiles in the liver.

Tissue Culture and In Vitro Assays

Hepa1c cells weremaintained under standard growth conditions (DMEM, 10%

fetal bovine serum). Confluent (60%–70%) cells were treated with 5 mM 5-AZA

(Sigma) or vehicle for 48 hr. After treatment, cells were additionally incubated

with insulin (400 nM) for 6 hr, rosiglitazone (10 mM) for 24 hr, or Tnfa (100 ng/mL)

for 24 hr. All products were obtained from Miltenyi Biotech.

Sperm and Islet Cell Isolation

Sperm was isolated from 2- to 3-month-old mice. The reproductive tract was

retrieved, the epididymal conduct of both sides was punctured with a needle,

and sperm was isolated by gently shaking the epididymis. The sperm was

collected in a culture dish containing warmed PBS solution. Purity of the sperm

was initially assessed by microscopy and further evaluated by determining the

level of DNA methylation at two Ctcf binding sites in the imprinting control

region upstream of H19 (Figure S6). As expected, the level of methylation

was >85% in sperm samples, which is very reminiscent of what was observed

in healthy human men at the corresponding locus (Boissonnas et al., 2010),

confirming that the isolation yielded a high purity in spermatozoa with minimal

contamination of accompanying somatic cells.

Islet cells were isolated from 2-month-old mice as previously described

(Jimenez-Chillaron et al., 2005).

DNA and RNA Extraction

Genomic DNA from tissues was extracted using the Wizard Genomic DNA

Purification Systems Kit (Promega Biotech Ibérica S.L.). Sperm DNA was iso-

lated by using the DNeasy Blood & Tissue Kit (Izasa-QIAGEN). Total RNA was

isolated by using TriReagent (Sigma-Aldrich).

Microarray Experiments and Differential Expression Analysis

Total liver RNA was amplified by MEGAScript T7, retrotranscribed to cDNA,

and labeled with the IVT kit. Labeled cRNA (15 mg) was fragmented and hybrid-

ized to oligonucleotide GeneChip Affymetrix Mouse 430 2.0 whole-genome ar-

rays. Threemicroarrays were hybridized for each group (C-F2, IUGR-F2). Each

array contained the pooled RNA from three independent mice. Expression

values were summarized after background correction and normalization steps

using the robust multiarray average (RMA) methodology (Irizarry et al., 2003).

Differential expression analysis was performed by the nonparametric

approach Rank Prod (Breitling et al., 2004). Oligonucleotides presenting

changes between groups with q values lower than 0.05 were considered sig-

nificant. The tool DAVID (Huang et al., 2009) was used for the calculation of the

functional clustering enrichment statistics of the Gene Ontology Biological

Process database considering the list of significant genes.

Assessment of DNA Methylation by Pyrosequencing

Quantitative DNA methylation analysis was performed by pyrosequencing of

bisulfite-treated DNA (Tost and Gut, 2007). One microgram of DNA was bisul-

phite converted using the EpiTect 96 Bisulfite kit (QIAGEN). Regions of interest

for validation were amplified using 30 ng of bisulfite-treated genomic DNA and

5–7.5 pmol of forward and reverse primer, one of them being biotinylated

(Table S2) (Tost and Gut, 2007). Quantitative DNA methylation analysis was

carried out on a PSQ 96MD system with the PyroGold SQA Reagent Kit

(QIAGEN), and results were analyzed using the PyroMark CpG software

(V.1.0.11.14, QIAGEN).

RT-qPCR Analysis

cDNA was synthesized from 1 mg of total RNA using Random Primers

(Promega Biotech Ibérica S.L.). The amplification of the genes of interest
ell Metabolism 19, 941–951, June 3, 2014 ª2014 Elsevier Inc. 949
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was performed using real-time quantitative PCR on a 7500 Real-Time PCR

System and 7500 Software v.2.0.4 (Applied Biosystems) using SYBR

(Promega Biotech Ibérica S.L.) and TaqMan 2x Universal PCR Master Mix

(Applied Biosystems). The list of primers is available in Table S2.

Western Blot and Chromatin Immunoprecipitation

Western blots were performed using 50 mg of protein extract as previously

described (Jimenez-Chillaron et al., 2005). The list of antibodies is detailed in

Table S3.

ChIP analyseswere performed as follows. Liver tissue (100mg) of was sliced

in PBS. Formaldehyde (1.5%) and glycine (0.125 M) were added for 5 min to

quench the crosslinking reaction. Chromatin was extracted with lysis buffer

(50 mM Tris, 10 mM EDTA, 1% SDS, 13 protease inhibitor, and 2 mM phenyl-

methylsulfonyl fluoride [PMSF]). Lysates were sonicated and cleared by centri-

fugation at 10,0003 g for 25 min at 4�C. Samples were diluted 1/10 in dilution

buffer (0.01% SDS, 1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl

[pH 8.1], 167 mM NaCl). Fifty microliters of diluted samples were saved as

Input DNA. The remaining sample (450 ml) was immunoprecipitated overnight

at 4�C with 5 mg of the corresponding antibody (Table S3). Samples were

washed and boiled to revert the crosslink, and DNA was recovered for RT-

qPCR analysis.

Statistical Analysis

Results are expressed as mean ± SEM. Statistical analysis was performed

using a two-tailed t test or a one-way ANOVA as indicated (IBM SPSS Statis-

tics 19). A p value < 0.05 was considered significant.
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