168 research outputs found
Second order resonant Raman scattering in single layer tungsten disulfide (WS)
Resonant Raman spectra of single layer WS flakes are presented. A
second order Raman peak (2LA) appears under resonant excitation with a
separation from the E mode of only cm. Depending on the
intensity ratio and the respective line widths of these two peaks, any analysis
which neglects the presence of the 2LA mode can lead to an inaccurate
estimation of the position of the E mode, leading to a potentially
incorrect assignment for the number of layers. Our results show that the
intensity of the 2LA mode strongly depends on the angle between the linear
polarization of the excitation and detection, a parameter which is neglected in
many Raman studies.Comment: 6 pages, 4 figure
Microphotoluminescence study of disorder in ferromagnetic (Cd,Mn)Te quantum well
Microphotoluminescence mapping experiments were performed on a modulation
doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The
zero field splitting that reveals the presence of a spontaneous magnetization
in the low-temperature phase, is measured locally; its fluctuations are
compared to those of the spin content and of the carrier density, also measured
spectroscopically in the same run. We show that the fluctuations of the carrier
density are the main mechanism responsible for the fluctuations of the
spontaneous magnetization in the ferromagnetic phase, while those of the Mn
spin density have no detectable effect at this scale of observation.Comment: 4 pages, 3 figure
The Fermi edge singularity of spin polarized electrons
We study the absorption spectrum of a two-dimensional electron gas (2DEG) in
a magnetic field. We find that that at low temperatures, when the 2DEG is spin
polarized, the absorption spectra, which correspond to the creation of spin up
or spin down electron, differ in magnitude, linewidth and filling factor
dependence. We show that these differences can be explained as resulting from
creation of a Mahan exciton in one case, and of a power law Fermi edge
singularity in the other.Comment: 4 pages, 4 figures, published in Phys. Rev. Let
Optical absorption to probe the quantum Hall ferromagnet at filling factor
Optical absorption measurements are used to probe the spin polarization in
the integer and fractional quantum Hall effect regimes. The system is fully
spin polarized only at filling factor and at very low
temperatures( mK). A small change in filling factor
() leads to a significant depolarization. This
suggests that the itinerant quantum Hall ferromagnet at is surprisingly
fragile against increasing temperature, or against small changes in filling
factor.Comment: 4 pages, 2 figure
Non equilibrium anisotropic excitons in atomically thin ReS
We present a systematic investigation of the electronic properties of bulk
and few layer ReS van der Waals crystals using low temperature optical
spectroscopy. Weak photoluminescence emission is observed from two
non-degenerate band edge excitonic transitions separated by 20 meV. The
comparable emission intensity of both excitonic transitions is incompatible
with a fully thermalized (Boltzmann) distribution of excitons, indicating the
hot nature of the emission. While DFT calculations predict bilayer ReS to
have a direct fundamental band gap, our optical data suggests that the
fundamental gap is indirect in all cases
Cyclotron-resonant exciton transfer between the nearly free and strongly localized radiative states of a two-dimensional hole gas in a high magnetic field
Avoided crossing of the emission lines of a nearly free positive trion and a
cyclotron replica of an exciton bound to an interface acceptor has been
observed in the magneto-photoluminescence spectra of p-doped GaAs quantum
wells. Identification of the localized state depended on the precise mapping of
the anti-crossing pattern. The underlying coupling is caused by an exciton
transfer combined with a resonant cyclotron excitation of an additional hole.
The emission spectrum of the resulting magnetically tunable coherent state
probes weak localization in the quantum well.Comment: 5 pages, 5 figure
Enhancement of the spin-gap in fully occupied two-dimensional Landau levels
Polarization-resolved magneto-luminescence, together with simultaneous
magneto-transport measurements, have been performed on a two-dimensional
electron gas (2DEG) confined in CdTe quantum well in order to determine the
spin-splitting of fully occupied electronic Landau levels, as a function of the
magnetic field (arbitrary Landau level filling factors) and temperature. The
spin splitting, extracted from the energy separation of the \sigma+ and \sigma-
transitions, is composed of the ordinary Zeeman term and a many-body
contribution which is shown to be driven by the spin-polarization of the 2DEG.
It is argued that both these contributions result in a simple, rigid shift of
Landau level ladders with opposite spins.Comment: 4 pages, 3 figure
- …
