168 research outputs found

    Second order resonant Raman scattering in single layer tungsten disulfide (WS2_{2})

    Full text link
    Resonant Raman spectra of single layer WS2_{2} flakes are presented. A second order Raman peak (2LA) appears under resonant excitation with a separation from the E2g1^{1}_{2g} mode of only 44cm1^{-1}. Depending on the intensity ratio and the respective line widths of these two peaks, any analysis which neglects the presence of the 2LA mode can lead to an inaccurate estimation of the position of the E2g1^{1}_{2g} mode, leading to a potentially incorrect assignment for the number of layers. Our results show that the intensity of the 2LA mode strongly depends on the angle between the linear polarization of the excitation and detection, a parameter which is neglected in many Raman studies.Comment: 6 pages, 4 figure

    Microphotoluminescence study of disorder in ferromagnetic (Cd,Mn)Te quantum well

    Full text link
    Microphotoluminescence mapping experiments were performed on a modulation doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The zero field splitting that reveals the presence of a spontaneous magnetization in the low-temperature phase, is measured locally; its fluctuations are compared to those of the spin content and of the carrier density, also measured spectroscopically in the same run. We show that the fluctuations of the carrier density are the main mechanism responsible for the fluctuations of the spontaneous magnetization in the ferromagnetic phase, while those of the Mn spin density have no detectable effect at this scale of observation.Comment: 4 pages, 3 figure

    The Fermi edge singularity of spin polarized electrons

    Full text link
    We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electron, differ in magnitude, linewidth and filling factor dependence. We show that these differences can be explained as resulting from creation of a Mahan exciton in one case, and of a power law Fermi edge singularity in the other.Comment: 4 pages, 4 figures, published in Phys. Rev. Let

    Optical absorption to probe the quantum Hall ferromagnet at filling factor ν=1\nu=1

    Full text link
    Optical absorption measurements are used to probe the spin polarization in the integer and fractional quantum Hall effect regimes. The system is fully spin polarized only at filling factor ν=1\nu=1 and at very low temperatures(40\sim40 mK). A small change in filling factor (δν±0.01\delta\nu\approx\pm0.01) leads to a significant depolarization. This suggests that the itinerant quantum Hall ferromagnet at ν=1\nu=1 is surprisingly fragile against increasing temperature, or against small changes in filling factor.Comment: 4 pages, 2 figure

    Non equilibrium anisotropic excitons in atomically thin ReS2_2

    Full text link
    We present a systematic investigation of the electronic properties of bulk and few layer ReS2_2 van der Waals crystals using low temperature optical spectroscopy. Weak photoluminescence emission is observed from two non-degenerate band edge excitonic transitions separated by \sim 20 meV. The comparable emission intensity of both excitonic transitions is incompatible with a fully thermalized (Boltzmann) distribution of excitons, indicating the hot nature of the emission. While DFT calculations predict bilayer ReS2_2 to have a direct fundamental band gap, our optical data suggests that the fundamental gap is indirect in all cases

    Cyclotron-resonant exciton transfer between the nearly free and strongly localized radiative states of a two-dimensional hole gas in a high magnetic field

    Full text link
    Avoided crossing of the emission lines of a nearly free positive trion and a cyclotron replica of an exciton bound to an interface acceptor has been observed in the magneto-photoluminescence spectra of p-doped GaAs quantum wells. Identification of the localized state depended on the precise mapping of the anti-crossing pattern. The underlying coupling is caused by an exciton transfer combined with a resonant cyclotron excitation of an additional hole. The emission spectrum of the resulting magnetically tunable coherent state probes weak localization in the quantum well.Comment: 5 pages, 5 figure

    Enhancement of the spin-gap in fully occupied two-dimensional Landau levels

    Full text link
    Polarization-resolved magneto-luminescence, together with simultaneous magneto-transport measurements, have been performed on a two-dimensional electron gas (2DEG) confined in CdTe quantum well in order to determine the spin-splitting of fully occupied electronic Landau levels, as a function of the magnetic field (arbitrary Landau level filling factors) and temperature. The spin splitting, extracted from the energy separation of the \sigma+ and \sigma- transitions, is composed of the ordinary Zeeman term and a many-body contribution which is shown to be driven by the spin-polarization of the 2DEG. It is argued that both these contributions result in a simple, rigid shift of Landau level ladders with opposite spins.Comment: 4 pages, 3 figure
    corecore