18 research outputs found

    Active Swarm Resiliency in the HelioSwarm Mission

    Get PDF
    Designed to observe plasma turbulence dynamics in solar wind over a distributed volume of space, the HelioSwarm mission comprises a primary chief spacecraft and eight smaller deputy satellites in uniquely assigned loops of periodic relative motion in a P/2 lunar resonant orbit. If one or more deputies fail, this multi-satellite architecture facilitates resiliency for science goals through repositioning of satellites to contingency loops. This strategy of Active Swarm Resiliency mitigates risk by modeling quantitative results ahead of time for mission operators to make informed decisions. Responsive actions meet minimum science objectives based on past and predicted system performance, an approach with applications to future missions with similar architecture and requirements

    Effects of Spin-Orbit Resonance in Stability for Low Altitude Mars Orbits

    Get PDF
    Orbit stability has been thoughtfully studied in various celestial bodies. The increasing interest in Mars orbiters brings the question of the likelihood of natural decay in low altitude regimes. This paper studies the shape change of low altitude Mars orbits by carrying out large sets of numerical high fidelity simulations. Results showed that various configurations of the orbital elements gave perturbations that resulted in unstable orbits. The paper also studies the potential causes of the observed unstable regions. We computed theoretical spin-orbit resonances to study their implications in the stability at low altitudes. The resonances were tested at different initial Longitudes of the Ascending Node (LAN) and orbit inclinations to check the potential existence of latitude/longitude implications on the stability

    Stability and Spin-Orbit Resonance Analysis of Low Altitude Martian Orbits

    Get PDF
    Orbit stability has been thoughtfully studied in various celestial bodies. In particular the focus has been placed on the Moon, due to the unstable natural perturbations of its gravity field. The increasing interest in Mars orbiters brings the question of the likelihood of natural decay in low altitude regimes. This paper studies the change in shape of low altitude Mars orbits by carrying out large sets of numerical high fidelity simulations. Results showed that various configurations of the orbital elements gave perturbations that result-ed in unstable orbits. The paper also studies the potential causes of the observed unstable regions. First by taking a close look at zonal and tesseral harmonics to find the implications of Mars mass concentrations of the used gravity fields, and second by computing theoretical spin-orbit resonances to study their implications in the stability at low altitudes

    Operating Small Sat Swarms as a Single Entity: Introducing SODA

    Get PDF
    NASA’s decadal survey determined that simultaneous measurements from a 3D volume of space are advantageous for a variety of studies in space physics and Earth science. Therefore, swarm concepts with multiple spacecraft in close proximity are a growing topic of interest in the small satellite community. Among the capabilities needed for swarm missions is a means to maintain operator-specified geometry, alignment, or separation. Swarm stationkeeping poses a planning challenge due to the limited scalability of ground resources. To address scalable control of orbital dynamics, we introduce SODA – Swarm Orbital Dynamics Advisor – a tool that accepts high-level configuration commands and provides the orbital maneuvers needed to achieve the desired type of swarm relative motion. Rather than conventional path planning, SODA’s innovation is the use of artificial potential functions to define boundaries and keepout regions. The software architecture includes high fidelity propagation, accommodates manual or automated inputs, displays motion animations, and returns maneuver commands and analytical results. Currently, two swarm types are enabled: in-train distribution and an ellipsoid volume container. Additional swarm types, simulation applications, and orbital destinations are in planning stages

    Propulsion Trade Studies for Spacecraft Swarm Mission Design

    Get PDF
    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems

    Arcus Mission Design: Stable Lunar-Resonant High Earth Orbit for X-Ray Astronomy

    Get PDF
    The Arcus mission, proposed for NASA's 2016 Astrophysics Medium Explorer (MIDEX) announcement of opportunity, will use X-ray spectroscopy to detect previously unaccounted quantities of normal matter in the Universe. The Arcus mission design uses 4:1 lunar resonance to provide a stable orbit for visibility of widely-dispersed targets, in a low background radiation environment, above the Van Allen belts for the minimum two-year science mission. Additional ad-vantages of 4:1 resonance are long term stability without maintenance maneu-vers, eclipses under 4.5 hours, perigee radius approximately 12 Re for data download, and streamlined operational cadence with approximately 1 week orbit period

    Mission Simulation Toolkit

    Get PDF
    The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space

    Arcus Mission Design: Stable Lunar Resonant HEO for X-ray Astronomy

    Get PDF
    The Arcus mission, proposed for NASA's 2016 Astrophysics Medium Explorer (MIDEX) announcement of opportunity, will use X-ray spectroscopy to detect previously unaccounted quantities of normal matter in the Universe. The Arcus mission design uses 4:1 lunar resonance to provide a stable orbit for visibility of widely-dispersed targets, in a low background radiation environment, above the Van Allen belts for the minimum two-year science mission. Additional ad-vantages of 4:1 resonance are long term stability without maintenance maneuvers, eclipses under 4.5 hours, perigee radius approximately 12 Re for data download, and streamlined operational cadence with approximately 1 week or-bit period

    PADME (Phobos And Deimos and Mars Environment): A Proposed NASA Discovery Mission to Investigate the Two Moons of Mars

    Get PDF
    After 40 years of solar system exploration by spacecraft, the origin of Mars's satellites, remains vexingly unknown. There are three prevailing hypotheses concerning their origin: H1: They are captured small bodies from the outer main belt or beyond; H2: They are reaccreted Mars impact ejecta; H3: They are remnants of Mars' formation. There are many variants of these hypotheses, but as stated, these three capture the key ideas and constraints on their nature. So far, data and modeling have not allowed any one of these hypotheses to be verified or excluded. Each one of these hypotheses has important implications for the evolution of the solar system, the formation and evolution of planets and satellites, and the delivery of water and organics to Early Mars and Early Earth. Determining the origin of Phobos and Deimos is identified by the NASA and the NRC Decadal Survey as the most important science goal at these bodies
    corecore