15 research outputs found

    Aquaculture Perspective of Multi-Use Sites in the Open Ocean: The Untapped Potential for Marine Resources in the Anthropocene

    Get PDF
    This volume addresses the potential for combining large-scale marine aquaculture of macroalgae, molluscs, crustaceans, and finfish, with offshore structures, primarily those associated with energy production, such as wind turbines and oil-drilling platforms. The volume offers a comprehensive overview and includes chapters on policy, science, engineering, and economic aspects to make this concept a reality. The compilation of chapters authored by internationally recognized researchers across the globe addresses the theoretical and practical aspects of multi-use, and presents case studies of research, development, and demonstration-scale installations in the US and EU

    Exchange flow between open water and floating vegetation

    Get PDF
    This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating vegetation. The partial-depth porous obstruction represents the root layer, which does not penetrate to the bed. Initially, a vertical wall separates the two regions, with fluid of higher density in the obstructed region and fluid of lower density in the open region. This density difference represents the influence of differential solar heating due to shading by the vegetation. For a range of root density and root depths, the velocity distribution is measured in the lab using PIV. When the vertical wall is removed, the less dense water flows into the obstructed region at the surface. This surface flow bifurcates into two layers, one flowing directly through the root layer and one flowing beneath the root layer. A flow directed out of the vegetated region occurs at the bed. A model is developed that predicts the flow rates within each layer based on energy considerations. The experiments and model together suggest that at time- and length-scales relevant to the field, the flow structure for any root layer porosity approaches that of a fully blocked layer, for which the exchange flow occurs only beneath the root layer.National Science Foundation (U.S.) (grant EAR0509658
    corecore