31 research outputs found

    Adverse bioenergetic effects of N-acyl amino acids in human adipocytes overshadow beneficial mitochondrial uncoupling

    Get PDF
    Objective: Enhancing energy turnover via uncoupled mitochondrial respiration in adipose tissue has great potential to improve human obesity and other metabolic complications. However, the amount of human brown adipose tissue and its uncoupling protein 1 (UCP1) is low in obese patients. Recently, a class of endogenous molecules, N-acyl amino acids (NAAs), was identified as mitochondrial uncouplers in murine adipocytes, presumably acting via the adenine nucleotide translocator (ANT). Given the translational potential, we investigated the bioenergetic effects of NAAs in human adipocytes, characterizing beneficial and adverse effects, dose ranges, amino acid derivatives and underlying mechanisms. Method: NAAs with neutral (phenylalanine, leucine, isoleucine) and polar (lysine) residues were synthetized and assessed in intact and permeabilized human adipocytes using plate-based respirometry. The Seahorse technology was applied to measure bioenergetic parameters, dose-dependency, interference with UCP1 and adenine nucleotide translocase (ANT) activity, as well as differences to the established chemical uncouplers niclosamide ethanolamine (NEN) and 2,4-dinitrophenol (DNP). Result: NAAs with neutral amino acid residues potently induce uncoupled respiration in human adipocytes in a dose-dependent manner, even in the presence of the UCP1-inhibitor guanosine diphosphate (GDP) and the ANT-inhibitor carboxyatractylate (CAT). However, neutral NAAs significantly reduce maximal oxidation rates, mitochondrial ATP-production, coupling efficiency and reduce adipocyte viability at concentrations above 25 μM. The in vitro therapeutic index (using induced proton leak and viability as determinants) of NAAs is lower than that of NEN and DNP. Conclusion: NAAs are potent mitochondrial uncouplers in human adipocytes, independent of UCP1 and ANT. However, previously unnoticed adverse effects harm adipocyte functionality, reduce the therapeutic index of NAAs in vitro and therefore question their suitability as anti-obesity agents without further chemical modifications

    Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease

    Get PDF
    Rho-family GTPases like RhoA and Rac-1 are potent regulators of cellular signaling that control gene expression, migration and inflammation. Activation of Rho-GTPases has been linked to podocyte dysfunction, a feature of chronic kidney diseases (CKD). We investigated the effect of Rac-1 and Rho kinase (ROCK) inhibition on progressive renal failure in mice and studied the underlying mechanisms in podocytes. SV129 mice were subjected to 5/6-nephrectomy which resulted in arterial hypertension and albuminuria. Subgroups of animals were treated with the Rac-1 inhibitor EHT1846, the ROCK inhibitor SAR407899 and the ACE inhibitor Ramipril. Only Ramipril reduced hypertension. In contrast, all inhibitors markedly attenuated albumin excretion as well as glomerular and tubulo-interstitial damage. The combination of SAR407899 and Ramipril was more effective in preventing albuminuria than Ramipril alone. To study the involved mechanisms, podocytes were cultured from SV129 mice and exposed to static stretch in the Flexcell device. This activated RhoA and Rac-1 and led via TGFβ to apoptosis and a switch of the cells into a more mesenchymal phenotype, as evident from loss of WT-1 and nephrin and induction of α-SMA and fibronectin expression. Rac-1 and ROCK inhibition as well as blockade of TGFβ dramatically attenuated all these responses. This suggests that Rac-1 and RhoA are mediators of podocyte dysfunction in CKD. Inhibition of Rho-GTPases may be a novel approach for the treatment of CKD

    Cooperative Functionalities in Porous Nanoparticles for Seeking Extracellular DNA and Targeting Pathogenic Biofilms via Photodynamic Therapy

    Get PDF
    Many pathogenic bacteria are getting more and more resistant against antibiotic treatment and even become up to 1.000× times more resilient in the form of a mature biofilm. Thus, one is currently prospecting for alternative methods for treating microbial infections, and photodynamic therapy is a highly promising approach by creating so-called reactive oxygen species (ROS) produced by a photosensitizer (PS) upon irradiation with light. Unfortunately, the unspecific activity of ROS is also problematic as they are harmful to healthy tissue as well. Notably, one knows that uncontrolled existence of ROS in the body plays a major role in the development of cancer. These arguments create need for advanced theranostic materials which are capable of autonomous targeting and detecting the existence of a biofilm, followed by specific activation to combat the infection. The focus of this contribution is on mesoporous organosilica colloids functionalized by orthogonal and localized click-chemistry methods. The external zone of the particles is modified by a dye of the Hoechst family. The particles readily enter a mature biofilm where adduct formation with extracellular DNA and a resulting change in the fluorescence signal occurs, but they cannot cross cellular membranes such as in healthy tissue. A different dye suitable for photochemical ROS generation, Acridine Orange, is covalently linked to the surfaces of the internal mesopores. The spectral overlap between the emission of Hoechst with the absorption band of Acridine Orange facilitates energy transfer by Förster resonance with up to 88% efficiency. The theranostic properties of the materials including viability studies were investigated in vitro on mature biofilms formed by Pseudomonas fluorescens and prove the high efficacy

    Saccharide Display on Microtiter Plates

    Get PDF
    AbstractNew insight into the importance of carbohydrates in biological systems underscores the need for rapid synthetic and screening procedures for them. Development of an organic synthesis-compatible linker that would attach saccharides to microtiter plates was therefore undertaken to facilitate research in glycobiology. Galactosyllipids containing small, hydrophobic groups at the anomeric position were screened for noncovalent binding to microtiter plates. When the lipid component was a saturated hydrocarbon between 13 and 15 carbons in length, the monosaccharide showed complete retention after aqueous washing and could be utilized in biological assays. This alkyl chain was also successfully employed with more complex oligosaccharides in biological assays. In light of these findings, this method of attachment of oligosaccharides to microtiter plates should be highly efficacious to high-throughput synthesis and analyses of carbohydrates in biological assays

    Multifunctional croconaine nanoparticles for efficient optoacoustic imaging of deep tumors and photothermal therapy

    Get PDF
    The proper design of near-infrared light-Absorbing agents enables efficient optoacoustic imaging-guided phototherapy. In particular, several croconaine-based organic agents with excellent optical properties have been recently reported for this purpose. However, most of them absorb light below 800 nm, limiting deep-Tissue imaging applications. To this end, we utilized a recently described novel croconaine derivative (CR880) to develop CR880-based nanoparticles (CR880-NPs) for effective in vivo delivery, deep tissue optoacoustic imaging and photothermal therapy applications. Radicals and strong π-πstacking in CR880 result in an 880 nm absorption peak with no blue-shift upon condensing to the solid phase. DSPE-PEG2000-formulated CR880-NPs exhibited high optoacoustic generation efficiency and photostability, and could be visualized in the tumors of three different mouse tumor models (breast, brain, and colon tumor) with high image contrast. The high photothermal conversion efficiency of CR880-NPs (∼58%) subsequently enabled efficient in vivo tumor elimination using a low energy laser, while remaining biocompatible and well-Tolerated. This work introduces a promising novel agent for cancer theranostics of challenging deep-seated tumors

    Silmitasertib (CX-4945), a Clinically Used CK2-Kinase Inhibitor with Additional Effects on GSK3β and DYRK1A Kinases: A Structural Perspective

    Get PDF
    A clinical casein kinase 2 inhibitor, CX-4945 (silmitasertib), shows significant affinity toward the DYRK1A and GSK3β kinases, involved in down syndrome phenotypes, Alzheimer’s disease, circadian clock regulation, and diabetes. This off-target activity offers an opportunity for studying the effect of the DYRK1A/GSK3β kinase system in disease biology and possible line extension. Motivated by the dual inhibition of these kinases, we solved and analyzed the crystal structures of DYRK1A and GSK3β with CX-4945. We built a quantum-chemistry-based model to rationalize the compound affinity for CK2α, DYRK1A, and GSK3β kinases. Our calculations identified a key element for CK2α’s subnanomolar affinity to CX-4945. The methodology is expandable to other kinase selectivity modeling. We show that the inhibitor limits DYRK1A- and GSK3β-mediated cyclin D1 phosphorylation and reduces kinase-mediated NFAT signaling in the cell. Given the CX-4945’s clinical and pharmacological profile, this inhibitory activity makes it an interesting candidate with potential for application in additional disease areas

    A20 and ABIN-1 cooperate in balancing CBM complex-triggered NF-κB signaling in activated T cells

    Get PDF
    T cell activation initiates protective adaptive immunity, but counterbalancing mechanisms are critical to prevent overshooting responses and to maintain immune homeostasis. The CARD11-BCL10-MALT1 (CBM) complex bridges T cell receptor engagement to NF-κB signaling and MALT1 protease activation. Here, we show that ABIN-1 is modulating the suppressive function of A20 in T cells. Using quantitative mass spectrometry, we identified ABIN-1 as an interactor of the CBM signalosome in activated T cells. A20 and ABIN-1 counteract inducible activation of human primary CD4 and Jurkat T cells. While A20 overexpression is able to silence CBM complex-triggered NF-κB and MALT1 protease activation independent of ABIN-1, the negative regulatory function of ABIN-1 depends on A20. The suppressive function of A20 in T cells relies on ubiquitin binding through the C-terminal zinc finger (ZnF)4/7 motifs, but does not involve the deubiquitinating activity of the OTU domain. Our mechanistic studies reveal that the A20/ABIN-1 module is recruited to the CBM complex via A20 ZnF4/7 and that proteasomal degradation of A20 and ABIN-1 releases the CBM complex from the negative impact of both regulators. Ubiquitin binding to A20 ZnF4/7 promotes destructive K48-polyubiquitination to itself and to ABIN-1. Further, after prolonged T cell stimulation, ABIN-1 antagonizes MALT1-catalyzed cleavage of re-synthesized A20 and thereby diminishes sustained CBM complex signaling. Taken together, interdependent post-translational mechanisms are tightly controlling expression and activity of the A20/ABIN-1 silencing module and the cooperative action of both negative regulators is critical to balance CBM complex signaling and T cell activation. © 2022, The Author(s)

    Facile Synthesis of a Croconaine-Based Nanoformulation for Optoacoustic Imaging and Photothermal Therapy

    Get PDF
    Near-infrared (NIR) light absorbing theranostic agents can integrate optoacoustic imaging and photothermal therapy for effective personalized precision medicine. However, most of these agents face the challenges of unstable optical properties, material-associated toxicity, and nonbiodegradability, all of which limit their biomedical application. Several croconaine-based organic agents able to overcome some of these limitations have been recently reported, but these suffer from complicated multistep synthesis protocols. Herein, the use of CR760, a croconaine dye with excellent optical properties, is reported for nanoparticle formulation and subsequent optoacoustic imaging and photothermal therapy. Importantly, CR760 can be conveniently prepared in a single step from commercially available materials. Furthermore, CR760 can be covalently attached, via a polyethylene glycol linker, to the αvβ3 integrin ligand c(RGDyC), resulting in self-assembled nanoparticles (NPs) with cancer-targeting capability. Such CR760RGD-NPs exhibit strong NIR absorption, high photostability, high optoacoustic generation efficiency, and active tumor-targeting, making them ideal candidates for optoacoustic imaging. Due to favorable electron transfer, CR760RGD-NPs display a 45.37% photothermal conversion efficiency thereby rendering them additionally useful for photothermal therapy. Targeted tumor elimination, biosafety, and biocompatibility are demonstrated in a 4T1 murine breast tumor model. This work points to the use of CR760RGD-NPs as a promising nanoagent for NIR-based cancer phototheranostics

    Acriflavine, a clinically approved drug, inhibits SARS-CoV-2 and other betacoronaviruses

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks. © 2021 The Author
    corecore