74 research outputs found

    Light Activated Electrochemistry: Light Intensity and pH Dependence on Electrochemical Performance of Anthraquinone Derivatized Silicon

    Get PDF
    We seek to understand how the thermodynamics and kinetics of anthraquinone-containing self-assembled monolayer on silicon electrodes are affected by two key experimental variables: the intensity of the light assisting the anthraquinone/anthrahydroquinone redox process and the local solution environment. The substrates are chemically passivated poorly doped p-type silicon electrodes. The study presents a strategy for the selective modulation of either the anodic or the cathodic process occurring at the interface. Cyclic voltammetry studies showed that unlike for a proton-coupled electron transfer process performed at metallic electrodes, for the redox reaction of the anthraquinone unit on a silicon electrode it becomes possible to (i) selectively facilitate only the oxidation process by increasing the electrolyte pH or (ii) at a given pH value to increase the illumination intensity to anodically shift the onset of the reduction step only but leave the oxidation process thermodynamic unchanged. A model concerning the proton coupled electron transfer mechanism was proposed, where the electron transfer is the rate-determining step for the anthraquinone reduction while a deprotonation step is the rate-determining event for the anthrahydroquinone oxidation on poorly doped illuminated p-type silicon

    Light-Activated Electrochemistry for the Two-Dimensional Interrogation of Electroactive Regions on a Monolithic Surface with Dramatically Improved Spatial Resolution

    Get PDF
    The concept of light-activated electrochemistry (LAE) was recently presented where faradaic electrochemistry could be spatially resolved on a monolithic silicon electrode by illuminating the specific region with light. A major implication from the previous study using illumination from the nonsolution side, or backside, is that the spatial resolution is limited by the finite thickness of silicon wafer. To overcome this restriction, and enable the further application of LAE, in combination with optical imaging for example, herein the spatial resolution of LAE using topside illumination (illumination from the solution side) is explored. The applied potential and irradiated light intensity are found to have significant effects on the spatial resolution. A spatial resolution of ~30 ”m was achieved with optimal parameters, which is a 20 times improvement compared with the previously reported backside illumination design, demonstrating the potential application of the strategy including microarray patterning of silicon or for single cell analysis

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase
    • 

    corecore