93 research outputs found
Origin of the human malaria parasite Plasmodium vivax
The geographic origin of Plasmodium vivax, a leading cause of human malaria, has been the subject of much speculation. Here we review the evolutionary history of P. vivax and P. vivax-like parasites in humans and non-human primates on three continents, providing overwhelming evidence for an African origin. This conclusion is consistent with recent reports showing that Duffy-negative humans in Africa are, in fact, susceptible to P. vivax, with parasites invading Duffy-antigen-expressing erythroid precursors. Thus, the African origin of P. vivax not only explains the distribution of the Duffy-negative genotype but also provides new insight into the history and status of P. vivax malaria in Africa and efforts geared toward its eradication.</p
Unusually Divergent Ubiquitin Genes and Proteins in Plasmodium Species
Ubiquitin is an extraordinarily highly conserved 76 amino acid protein encoded by three different types of gene, where the primary translation products are fusions either of ubiquitin with one of two ribosomal proteins (RPs) or of multiple ubiquitin monomers from head to tail. Here, we investigate the evolution of ubiquitin genes in mammalian malaria parasites (Plasmodium species). The ubiquitin encoded by the RPS27a fusion gene is highly divergent, as previously found in a variety of protists. However, we also find that two other forms of divergent ubiquitin sequence, each previously thought to be extremely rare, have arisen recently during the divergence of Plasmodium subgenera. On two occasions, in two distinct lineages, the ubiquitin encoded by the RPL40 fusion gene has rapidly diverged. In addition, in one of these lineages, the polyubiquitin genes have undergone a single codon insertion, previously considered a unique feature of Rhizaria. There has been disagreement whether the multiple ubiquitin coding repeats within a genome exhibit concerted evolution or undergo a birth-and-death process; the Plasmodium ubiquitin genes show clear signs of concerted evolution, including the spread of this codon insertion to multiple repeats within the polyubiquitin gene.</p
Simultaneous initiation of radical and cationic polymerization reactions using the "G1" copper complex as photoredox catalyst: Applications of free radical/cationic hybrid photopolymerization in the composites and
WOS:000469902800007This investigation presents the use of a photoredox catalyst "G1" as a photoinitiating system for free radical/cationic hybrid polymerization under mild irradiation conditions. The G1 system (G1/iodonium salt/N-vinylcarbazole), can simultaneously initiate the free radical and cationic polymerization reactions upon exposure to a visible (405 nm) light from a Light Emitting Diode (LED) source. The multicomponent G1 system is able to simultaneously generate radical and cationic species through a catalytic photoredox process. The curing of thin samples (25 mu m), thick samples (1.4 mm) as well as the manufacture of hybrid system/glass fibers composites ( 2 to 4 mm thickness) was realized and the influence of the ratio of cationic/radical monomer blends on the polymerization kinetics was studied. The use of G1 in visible light photoinitiating system for the access to composites and 3D printing experiments was particularly outlined. G1 was also shown to have low levels of migration from the cured materials. When compared to reference materials ("F1", a similar copper complex and an anthracene derivative, dibutoxy anthracene), G1 showed better polymerization efficiency. The initiation efficiency was investigated through the real-time Fourier transform infrared (RT-FTIR) spectroscopy and optical pyrometry. Dynamical Mechanical Analysis has been used to determine the glass temperature transition of the cured hybrid system as a complementary technique
Hybrid event bed character and distribution in the context of ancient deepâlacustrine fan models
Hybrid event beds are texturally and compositionally-diverse deposits preserved within deepwater settings. They are deposited by flows exhibiting âmixed behaviourâ, forming complex successions of sandstone and mudstone, which are often challenging to predict. Hybrid event beds are documented in deep-marine settings, where they have been thoroughly characterized, and are well-known as effective fluid transmissibility barriers and baffles in reservoirs. By comparison, there are far-fewer studies of hybrid event beds from deep-lacustrine settings, where their character and distribution remains relatively under-explored. In order to provide insights into these deposits, this study presents the detailed analysis of three-dimensional seismic data, wireline logs and core from a series of ancient deep-lacustrine fan systems in the North Falkland Basin. Results confirm that deep-lacustrine hybrid event beds comprise the same idealized sequence of the âH1âH5â divisions. However, in this study H3 âdebriteâ units can be sub-divided into âH3aâH3câ, based on: sharp or erosional intra-H3 contacts, bulk lithology, mud-content and discrete sedimentary textures. This study interprets the H3aâH3c sub-units as the products of multiple flow components formed through significant rearward longitudinal flow transformation processes, during the emplacement of a single hybrid event bed. Hybrid event beds are observed within lobe fringes, where flow types, energies, and transport mechanisms diversify as a result of flow transformation. The temporal context of hybrid event bed occurrences is considered in relation to stages of fan evolution, including: the Initiation; Growth (I); Growth (II); By-pass; Abandonment; and Termination phases. Hybrid event beds are mainly found in either the initiation phase where flow interaction and erosion of initial substrates promoted mixed flow behaviour, or in the abandonment phase as facies belt retreated landward. The results of this study have important implications in terms of flow processes of hybrid event bed emplacement, in particular sub-division of the H3 unit, as well as the prediction of hybrid event bed occurrence and character within ancient deep-lacustrine fan settings, in-general
Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-living Chimpanzees and Gorillas
Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania. Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum
Zoonotic origin of the human malaria parasite Plasmodium malariae from African apes
The human parasite Plasmodium malariae has relatives infecting African apes (Plasmodium rodhaini) and New World monkeys (Plasmodium brasilianum), but its origins remain unknown. Using a novel approach to characterise P. malariae-related sequences in wild and captive African apes, we found that this group comprises three distinct lineages, one of which represents a previously unknown, highly divergent species infecting chimpanzees, bonobos and gorillas across central Africa. A second ape-derived lineage is much more closely related to the third, human-infective lineage P. malariae, but exhibits little evidence of genetic exchange with it, and so likely represents a separate species. Moreover, the levels and nature of genetic polymorphisms in P. malariae indicate that it resulted from the zoonotic transmission of an African ape parasite, reminiscent of the origin of P. falciparum. In contrast, P. brasilianum falls within the radiation of human P. malariae, and thus reflects a recent anthroponosis.Peer Reviewe
Adaptive Evolution of RH5 in <i>Ape Plasmodium</i> species of the <i>Laverania</i> Subgenus
Plasmodium falciparum, the major cause of malaria morbidity and mortality in humans, has been shown to have emerged after cross-species transmission of one of six host-specific parasites (subgenus Laverania) infecting wild chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla). Binding of the parasite-encoded ligand RH5 to the host protein basigin is essential for erythrocyte invasion and has been implicated in host specificity. A recent study claimed to have found two amino acid changes in RH5 that âdrove the host shift leading to the emergence of P. falciparum as a human pathogen.â However, the ape Laverania data available at that time, which included only a single distantly related chimpanzee parasite sequence, were inadequate to justify any such conclusion. Here, we have investigated Laverania Rh5 gene evolution using sequences from all six ape parasite species. Searching for gene-wide episodic selection across the entire Laverania phylogeny, we found eight codons to be under positive selection, including three that correspond to contact residues known to form hydrogen bonds between P. falciparum RH5 and human basigin. One of these sites (residue 197) has changed subsequent to the transmission from apes to humans that gave rise to P. falciparum, suggesting a possible role in the adaptation of the gorilla parasite to the human host. We also found evidence that the patterns of nucleotide polymorphisms in P. falciparum are not typical of Laverania species and likely reflect the recent demographic history of the human parasite
Neuronal circuitry for pain processing in the dorsal horn
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
- âŠ