182 research outputs found

    Individual component analysis of the multi-parametric cardiovascular magnetic resonance protocol in the CE-MARC trial

    Get PDF
    Background: The CE-MARC study assessed the diagnostic performance investigated the use of cardiovascular magnetic resonance (CMR) in patients with suspected coronary artery disease (CAD). The study used a multi-parametric CMR protocol assessing 4 components: i) left ventricular function; ii) myocardial perfusion; iii) viability (late gadolinium enhancement (LGE)) and iv) coronary magnetic resonance angiography (MRA). In this pre-specified CE-MARC sub-study we assessed the diagnostic accuracy of the individual CMR components and their combinations. Methods: All patients from the CE-MARC population (n = 752) were included using data from the original blinded-read. The four individual core components of the CMR protocol was determined separately and then in paired and triplet combinations. Results were then compared to the full multi-parametric protocol. Results: CMR and X-ray angiography results were available in 676 patients. The maximum sensitivity for the detection of significant CAD by CMR was achieved when all four components were used (86.5 %). Specificity of perfusion (91.8 %), function (93.7 %) and LGE (95.8 %) on its own was significantly better than specificity of the multi-parametric protocol (83.4 %) (all P < 0.0001) but with the penalty of decreased sensitivity (86.5 % vs. 76.9 %, 47.4 % and 40.8 % respectively). The full multi-parametric protocol was the optimum to rule-out significant CAD (Likelihood Ratio negative (LR-) 0.16) and the LGE component alone was the best to rue-in CAD (LR+ 9.81). Overall diagnostic accuracy was similar with the full multi-parametric protocol (85.9 %) compared to paired and triplet combinations. The use of coronary MRA within the full multi-parametric protocol had no additional diagnostic benefit compared to the perfusion/function/LGE combination (overall accuracy 84.6 % vs. 84.2 % (P = 0.5316); LR- 0.16 vs. 0.21; LR+ 5.21 vs. 5.77). Conclusions: From this pre-specified sub-analysis of the CE-MARC study, the full multi-parametric protocol had the highest sensitivity and was the optimal approach to rule-out significant CAD. The LGE component alone was the optimal rule-in strategy. Finally the inclusion of coronary MRA provided no additional benefit when compared to the combination of perfusion/function/LGE. Trial registration: Current Controlled Trials ISRCTN77246133

    Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular Magnetic Resonance (CMR) imaging offers methods for the detection of ischemia and myocardial infarction as well as visualization of the coronary arteries (MRCA). However, a direct comparison of adenosine perfusion (PERF), late gadolinium enhancement (LGE) and MRCA or the results of their combination has not been performed. Aim of the study was to evaluate the feasibility/diagnostic performance of rest/stress perfusion, late gadolinium enhancement and MRCA and their combination in patients with suspected coronary artery disease (CAD) in comparison to invasive angiography.</p> <p>Methods</p> <p>Fifty-four patients (60 ± 10 years, 35 men, CAD 48%) underwent CMR including MRCA (steady state free precession, navigator whole heart approach, spatial resolution 0.7 × 0.7 × .0.9 mm, trigger delay and temporal resolution adjusted individually), stress PERF (adenosine 140 μg/min/kg), rest PERF (SSFP, 3 short axis, 1 saturation prepulse per slice) and LGE (3D inversion recovery technique) using Gd-BOPTA. Images were analyzed visually. Stenosis >50% in invasive angiography was considered significant.</p> <p>Results</p> <p>Mean study time was 68 ± 11 minutes. Sensitivity for PERF, LGE, MRCA and the combination of PERF/LGE and PERF/LGE/MRCA was 87%, 50%, 91%, 88% and 92%, respectively and specificity 88%, 96%, 46%, 88% and 56%, respectively. If image quality of MRCA was excellent (n = 18) the combination of MRCA/PERF/LGE yield a sensitivity of 86% and specificity of 91%. However, no test or combination improved diagnostic performance significantly compared to PERF alone.</p> <p>Conclusion</p> <p>In patients with CAD, the combination of stress PERF, LGE and MRCA is feasible. When compared to invasive angiography, adenosine stress perfusion outperforms CMR coronary angiography in direct comparison and yields the best results with non-significant improvement in combination with LGE and significant deterioration in combination with MRCA. MRCA may be of additional value only in a minority of patients with excellent image quality.</p

    Meta-analysis of the normal diffusion tensor imaging values of the peripheral nerves in the upper limb

    Get PDF
    Peripheral neuropathy affects 1 in 10 adults over the age of 40 years. Given the absence of a reliable diagnostic test for peripheral neuropathy, there has been a surge of research into diffusion tensor imaging (DTI) because it characterises nerve microstructure and provides reproducible proxy measures of myelination, axon diameter, fibre density and organisation. Before researchers and clinicians can reliably use diffusion tensor imaging to assess the ‘health’ of the major nerves of the upper limb, we must understand the “normal” range of values and how they vary with experimental conditions. We searched PubMed, Embase, medRxiv and bioRxiv for studies which reported the findings of DTI of the upper limb in healthy adults. Four review authors independently triple extracted data. Using the meta suite of Stata 17, we estimated the normal fractional anisotropy (FA) and diffusivity (mean, MD; radial, RD; axial AD) values of the median, radial and ulnar nerve in the arm, elbow and forearm. Using meta-regression, we explored how DTI metrics varied with age and experimental conditions. We included 20 studies reporting data from 391 limbs, belonging to 346 adults (189 males and 154 females, ~ 1.2 M:1F) of mean age 34 years (median 31, range 20–80). In the arm, there was no difference in the FA (pooled mean 0.59 mm2/s [95% CI 0.57, 0.62]; I2 98%) or MD (pooled mean 1.13 × 10–3 mm2/s [95% CI 1.08, 1.18]; I2 99%) of the median, radial and ulnar nerves. Around the elbow, the ulnar nerve had a 12% lower FA than the median and radial nerves (95% CI − 0.25, 0.00) and significantly higher MD, RD and AD. In the forearm, the FA (pooled mean 0.55 [95% CI 0.59, 0.64]; I2 96%) and MD (pooled mean 1.03 × 10–3 mm2/s [95% CI 0.94, 1.12]; I2 99%) of the three nerves were similar. Multivariable meta regression showed that the b-value, TE, TR, spatial resolution and age of the subject were clinically important moderators of DTI parameters in peripheral nerves. We show that subject age, as well as the b-value, TE, TR and spatial resolution are important moderators of DTI metrics from healthy nerves in the adult upper limb. The normal ranges shown here may inform future clinical and research studies

    Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis.

    Get PDF
    Neuropilin 1 (NRP1) is a receptor for class 3 semaphorins and vascular endothelial growth factor (VEGF) A and is essential for cardiovascular development. Biochemical evidence supports a model for NRP1 function in which VEGF binding induces complex formation between NRP1 and VEGFR2 to enhance endothelial VEGF signalling. However, the relevance of VEGF binding to NRP1 for angiogenesis in vivo has not yet been examined. We therefore generated knock-in mice expressing Nrp1 with a mutation of tyrosine (Y) 297 in the VEGF binding pocket of the NRP1 b1 domain, as this residue was previously shown to be important for high affinity VEGF binding and NRP1?VEGFR2 complex formation. Unexpectedly, this targeting strategy also severely reduced NRP1 expression and therefore generated a NRP1 hypomorph. Despite the loss of VEGF binding and attenuated NRP1 expression, homozygous Nrp1(Y297A/Y297A) mice were born at normal Mendelian ratios, arguing against NRP1 functioning exclusively as a VEGF164 receptor in embryonic angiogenesis. By overcoming the mid-gestation lethality of full Nrp1-null mice, homozygous Nrp1(Y297A/Y297A) mice revealed essential roles for NRP1 in postnatal angiogenesis and arteriogenesis in the heart and retina, pathological neovascularisation of the retina and angiogenesis-dependent tumour growth

    Performance of adenosine “stress-only” perfusion MRI in patients without a history of myocardial infarction: a clinical outcome study

    Get PDF
    To assess the diagnostic value of adenosine “stress-only” myocardial perfusion MR for ischemia detection as an indicator for coronary angiography in patients without a prior myocardial infarction and a necessity to exclude ischemia. Adenosine perfusion MRI was performed at 1.5 T in 139 patients with a suspicion of ischemia and no prior myocardial infarction. After 3 min of adenosine infusion a perfusion sequence was started. Patients with a perfusion defect were referred to coronary angiography (CAG). Patients with a normal perfusion were enrolled in follow-up. Fourteen out of 139 patients (10.1%) had a perfusion defect indicative of ischemia. These patients underwent a coronary angiogram, which showed complete agreement with the perfusion images. 125 patients with a normal myocardial perfusion entered follow-up (median 672 days, range 333–1287 days). In the first year of follow-up one Major Adverse Coronary Event (MACE) occurred and one patient had new onset chest pain with a confirmed coronary stenosis. Reaching a negative predictive value for MACE of 99.2% and for any coronary event of 98.4%. At 2 year follow-up no additional MACE occurred. Sensitivity of adenosine perfusion MR for MACE is 93.3% and specificity and positive predictive value are 100%. Adenosine myocardial perfusion MR for the detection of myocardial ischemia in a “stress-only” protocol in patients without prior myocardial infarctions, has a high diagnostic accuracy. This fast examination can play an important role in the evaluation of patients without prior myocardial infarctions and a necessity to exclude ischemia

    Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with ischemic heart disease, accurate assessment of the extent of myocardial perfusion deficit may be important in predicting prognosis of clinical cardiac outcomes. The aim of this study was to compare the ability of three dimensional (3D) and of two dimensional (2D) multi-slice myocardial perfusion imaging (MPI) using cardiovascular magnetic resonance (CMR) in determining the size of defects, and to demonstrate the feasibility of 3D MPI in healthy volunteers at 3 Tesla.</p> <p>Methods</p> <p>A heart phantom was used to compare the accuracy of 3D and 2D multi-slice MPI in estimating the volume fraction of seven rubber insets which simulated transmural myocardial perfusion defects. Three sets of cross-sectional planes were acquired for 2D multi-slice imaging, where each set was shifted along the partition encoding direction by ± 10 mm. 3D first-pass contrast-enhanced (0.1 mmol/kg Gd-DTPA) MPI was performed in three volunteers with sensitivity encoding for six-fold acceleration. The upslope of the myocardial time-intensity-curve and peak SNR/CNR values were calculated.</p> <p>Results</p> <p>Mean/standard deviation of errors in estimating the volume fraction across the seven defects were -0.44/1.49%, 2.23/2.97%, and 2.59/3.18% in 3D, 2D 4-slice, and 2D 3-slice imaging, respectively. 3D MPI performed in healthy volunteers produced excellent quality images with whole left ventricular (LV) coverage. Peak SNR/CNR was 57.6 ± 22.0/37.5 ± 19.7 over all segments in the first eight slices.</p> <p>Conclusion</p> <p>3D performed better than 2D multi-slice MPI in estimating the size of perfusion defects in phantoms. Highly accelerated 3D MPI at 3T was feasible in volunteers, allowing whole LV coverage with excellent image quality and high SNR/CNR.</p

    Inter-observer variability of visual analysis of “stress”-only adenosine first-pass myocardial perfusion imaging in relation to clinical experience and reading criteria

    Get PDF
    To assess the inter-observer agreement of adenosine “stress”-only visual analysis of perfusion MR images in relation to experience and reading criteria. 106 adenosine perfusion MR examinations out of 350, 46 consecutive positive examinations and 60 randomly selected negative examinations were visually analysed by three individual readers (two residents and a technician) with different levels of experience. Readings (blinded for any information) were compared with the reading of an expert radiologist. After a month the examinations were presented again (randomly) without knowledge regarding the first readings. This time readings were performed with the systematical use of reading criteria. Agreement with the expert reading was good for the most experienced resident (k = 0.88). Kappa was 0.48 for the least experienced, and 0.57 for the technician. After the second systematical reading inter-observer agreement increased to 0.9, 0.68 and 0.77 respectively. Overall kappa increased from 0.59 to 0.71. The use of reading criteria significantly improved the performance of the least experienced reader (P = 0.01). Visual analysis of adenosine “stress”-only first-pass perfusion MR images has moderate to very good agreement. Performance is experience related, but the systematic use of reading criteria significantly increased performance for the least experienced observer

    Detection of Intramyocardial Iron in Patients Following ST-Elevation Myocardial Infarction Using Cardiac Diffusion Tensor Imaging

    Get PDF
    Background Intramyocardial hemorrhage (IMH) following ST-elevation myocardial infarction (STEMI) is associated with poor prognosis. In cardiac magnetic resonance (MR), T2* mapping is the reference standard for detecting IMH while cardiac diffusion tensor imaging (cDTI) can characterize myocardial architecture via fractional anisotropy (FA) and mean diffusivity (MD) of water molecules. The value of cDTI in the detection of IMH is not currently known. Hypothesis cDTI can detect IMH post-STEMI. Study Type Prospective. Subjects A total of 50 patients (20% female) scanned at 1-week (V1) and 3-month (V2) post-STEMI. Field Strength/Sequence A 3.0 T; inversion-recovery T1-weighted-imaging, multigradient-echo T2* mapping, spin-echo cDTI. Assessment T2* maps were analyzed to detect IMH (defined as areas with T2* < 20 msec within areas of infarction). cDTI images were co-registered to produce averaged diffusion-weighted-images (DWIs), MD, and FA maps; hypointense areas were manually planimetered for IMH quantification. Statistics On averaged DWI, the presence of hypointense signal in areas matching IMH on T2* maps constituted to true-positive detection of iron. Independent samples t-tests were used to compare regional cDTI values. Results were considered statistically significant at P ≤ 0.05. Results At V1, 24 patients had IMH on T2*. On averaged DWI, all 24 patients had hypointense signal in matching areas. IMH size derived using averaged-DWI was nonsignificantly greater than from T2* (2.0 ± 1.0 cm2 vs 1.89 ± 0.96 cm2, P = 0.69). Compared to surrounding infarcted myocardium, MD was significantly reduced (1.29 ± 0.20 × 10−3 mm2/sec vs 1.75 ± 0.16 × 10−3 mm2/sec) and FA was significantly increased (0.40 ± 0.07 vs 0.23 ± 0.03) within areas of IMH. By V2, all 24 patients with acute IMH continued to have hypointense signals on averaged-DWI in the affected area. T2* detected IMH in 96% of these patients. Overall, averaged-DWI had 100% sensitivity and 96% specificity for the detection of IMH. Data Conclusion This study demonstrates that the parameters MD and FA are susceptible to the paramagnetic properties of iron, enabling cDTI to detect IMH

    Simplifying cardiovascular magnetic resonance pulse sequence terminology.

    Get PDF
    We propose a set of simplified terms to describe applied Cardiovascular Magnetic Resonance (CMR) pulse sequence techniques in clinical reports, scientific articles and societal guidelines or recommendations. Rather than using various technical details in clinical reports, the description of the technical approach should be based on the purpose of the pulse sequence. In scientific papers or other technical work, this should be followed by a more detailed description of the pulse sequence and settings. The use of a unified set of widely understood terms would facilitate the communication between referring physicians and CMR readers by increasing the clarity of CMR reports and thus improve overall patient care. Applied in research articles, its use would facilitate non-expert readers' understanding of the methodology used and its clinical meaning

    Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging

    Get PDF
    Background Hypertrophic cardiomyopathy (HCM) remains the commonest cause of sudden cardiac death among young athletes. Differentiating between physiologically adaptive left ventricular (LV) hypertrophy observed in athletes' hearts and pathological HCM remains challenging. By quantifying the diffusion of water molecules, diffusion tensor imaging (DTI) MRI allows voxelwise characterization of myocardial microstructure. Purpose To explore microstructural differences between healthy volunteers, athletes, and HCM patients using DTI. Study Type Prospective cohort. Population Twenty healthy volunteers, 20 athletes, and 20 HCM patients. Field Strength/Sequence 3T/DTI spin echo. Assessment In‐house MatLab software was used to derive mean diffusivity (MD) and fractional anisotropy (FA) as markers of amplitude and anisotropy of the diffusion of water molecules, and secondary eigenvector angles (E2A)—reflecting the orientations of laminar sheetlets. Statistical Tests Independent samples t‐tests were used to detect statistical significance between any two cohorts. Analysis of variance was utilized for detecting the statistical difference between the three cohorts. Statistical tests were two‐tailed. A result was considered statistically significant at P ≤ 0.05. Results DTI markers were significantly different between HCM, athletes, and volunteers. HCM patients had significantly higher global MD and E2A, and significantly lower FA than athletes and volunteers. (MDHCM = 1.52 ± 0.06 × 10−3 mm2/s, MDAthletes = 1.49 ± 0.03 × 10−3 mm2/s, MDvolunteers = 1.47 ± 0.02 × 10−3 mm2/s, P < 0.05; E2AHCM = 58.8 ± 4°, E2Aathletes = 47 ± 5°, E2Avolunteers = 38.5 ± 7°, P < 0.05; FAHCM = 0.30 ± 0.02, FAAthletes = 0.35 ± 0.02, FAvolunteers = 0.36 ± 0.03, P < 0.05). HCM patients had significantly higher E2A in their thickest segments compared to the remote (E2Athickest = 66.8 ± 7, E2Aremote = 51.2 ± 9, P < 0.05). Data Conclusion DTI depicts an increase in amplitude and isotropy of diffusion in the myocardium of HCM compared to athletes and volunteers as reflected by increased MD and decreased FA values. While significantly higher E2A values in HCM and athletes reflect steeper configurations of the myocardial sheetlets than in volunteers, HCM patients demonstrated an eccentric rise in E2A in their thickest segments, while athletes demonstrated a concentric rise. Further studies are required to determine the diagnostic capabilities of DTI. Evidence Level 1 Technical Efficacy Stage
    corecore