456 research outputs found

    Robust LHC Higgs Search in Weak Boson Fusion

    Full text link
    We demonstrate that an LHC Higgs search in weak boson fusion production with subsequent decay to weak boson pairs is robust against extensions of the Standard Model or MSSM involving a large number of Higgs doublets. We also show that the transverse mass distribution provides unambiguous discrimination of a continuum Higgs signal from the Standard Model.Comment: 12p, 2 figs., additional comments on backgrounds, version to appear in PR

    Determining the Structure of Higgs Couplings at the LHC

    Get PDF
    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.Comment: 5 pages, 4 figures, version accepted for publication in PR

    Pair production of neutral Higgs bosons at the CERN Large Hadron Collider

    Get PDF
    We study the hadroproduction of two neutral Higgs bosons in the minimal supersymmetric extension of the standard model, which provides a handle on the trilinear Higgs couplings. We include the contributions from quark-antiquark annihilation at the tree level and those from gluon-gluon fusion, which proceeds via quark and squark loops. We list compact results for the tree-level partonic cross sections and the squark loop amplitudes, and we confirm previous results for the quark loop amplitudes. We quantitatively analyze the hadronic cross sections at the CERN Large Hadron Collider assuming a favorable supergravity-inspired scenario.Comment: 22 pages (Latex), 16 figures (Postscript). Discussion of theoretical uncertainties and background processes added. Accepted for publication in Phys. Rev.

    Phenomenology of Mirror Fermions in the Littlest Higgs Model with T-Parity

    Get PDF
    Little Higgs models are an interesting alternative to explain electroweak symmetry breaking without fine-tuning. Supplemented with a discrete symmetry (T-parity) constraints from electroweak precision data are naturally evaded and also a viable dark matter candidate is obtained. T-parity implies the existence of new (mirror) fermions in addition to the heavy gauge bosons of the little Higgs models. In this paper we consider the effects of the mirror fermions on the phenomenology of the littlest Higgs model with T-parity at the LHC. We study the most promising production channels and decay chains for the new particles. We find that the mirror fermions have a large impact on the magnitude of signal rates and on the new physics signatures. Realistic background estimates are given.Comment: 13 p

    Jet Substructure Without Trees

    Get PDF
    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods.Comment: 22 pages, 16 figures, version accepted by JHE

    The Triple Higgs Boson Self-Coupling at Future Linear e+e- Colliders Energies: ILC and CLIC

    Full text link
    We analyzed the triple Higgs boson self-coupling at future e+ee^{+}e^{-} colliders energies, with the reactions e+ebbˉHH,ttˉHHe^{+}e^{-}\to b \bar b HH, t \bar t HH. We evaluate the total cross-sections for both bbˉHHb\bar bHH and ttˉHHt\bar tHH, and calculate the total number of events considering the complete set of Feynman diagrams at tree-level. We vary the triple coupling κλ3H\kappa\lambda_{3H} within the range κ=1\kappa=-1 and +2. The numerical computation is done for the energies expected to be available at a possible Future Linear e+ee^{+}e^{-} Collider with a center-of-mass energy 800,1000,1500800, 1000, 1500 GeVGeV and a luminosity 1000 fb1fb^{-1}. Our analysis is also extended to a center-of-mass energy 3 TeVTeV and luminosities of 1000 fb1fb^{-1} and 5000 fb1fb^{-1}. We found that for the process e+ebbˉHHe^{+}e^{-}\to b \bar b HH, the complete calculation differs only by 3% from the approximate calculation e+eZHH(Zbbˉ)e^{+}e^{-}\to ZHH(Z\to b\bar b), while for the process e+ettˉHHe^{+}e^{-}\to t \bar tHH, the expected number of events, considering the decay products of both tt and HH, is not enough to obtain an accurate determination of the triple Higgs boson self-coupling.Comment: 19 pages, 12 figure

    Enhancement of the Higgs pair production at LHC; the MSSM and extra dimension effects

    Get PDF
    The neutral Higgs pair production at the LHC is studied in the MSSM, the large extra dimensional (ADD) model and the Randall-Sundrum (RS) model, where the total cross section can be significantly enhanced compared to that in the SM. The pTp_{_T}, invariant mass and rapidity distributions of each model have been shown to be distinctive: The ADD model raises the pTp_T and invariant mass distributions at high scales of pTp_T and invariant mass; in the RS model resonant peaks appear after the SM contribution dies away; the SM and the MSSM distributions drop rapidly at those high scales; in the ADD and the RS models the rapidity distributions congregate more around the center. It is concluded that various distributions of the Higgs pair production at the LHC with restrictive kinematic cuts would provide one of the most robust signals for the extra dimensional effects.Comment: Revised version, 26 pages including 11 figures, ReVTe

    Searching for Multijet Resonances at the LHC

    Full text link
    Recently it was shown that there is a class of models in which colored vector and scalar resonances can be copiously produced at the Tevatron with decays to multijet final states, consistent with all experimental constraints and having strong discovery potential. We investigate the collider phenomenology of TeV scale colored resonances at the LHC and demonstrate a strong discovery potential for the scalars with early data as well as the vectors with additional statistics. We argue that the signal can be self-calibrating and using this fact we propose a search strategy which we show to be robust to systematic errors typically expected from Monte Carlo background estimates. We model the resonances with a phenomenological Lagrangian that describes them as bound states of colored vectorlike fermions due to new confining gauge interactions. However, the phenomenological Lagrangian treatment is quite general and can represent other scenarios of microscopic physics as well.Comment: 28 pages, 13 figures, pdflatex. Discussion of background expanded, minor modifications made. Version to appear in JHE

    Higgs-Boson Production Induced by Bottom Quarks

    Full text link
    Bottom quark-induced processes are responsible for a large fraction of the LHC discovery potential, in particular for supersymmetric Higgs bosons. Recently, the discrepancy between exclusive and inclusive Higgs boson production rates has been linked to the choice of an appropriate bottom factorization scale. We investigate the process kinematics at hadron colliders and show that it leads to a considerable decrease in the bottom factorization scale. This effect is the missing piece needed to understand the corresponding higher order results. Our results hold generally for charged and for neutral Higgs boson production at the LHC as well as at the Tevatron. The situation is different for single top quark production, where we find no sizeable suppression of the factorization scale. Turning the argument around, we can specify how large the collinear logarithms are, which can be resummed using the bottom parton picture.Comment: 18 page
    corecore