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Abstract

We study the hadroproduction of two neutral Higgs bosons in the minimal su-
persymmetric extension of the standard model (MSSM), which provides a handle on
the trilinear Higgs couplings. We include the contributions from quark-antiquark
annihilation at the tree level and those from gluon-gluon fusion, which proceeds
via quark and squark loops. We list compact results for the tree-level partonic
cross sections and the squark loop amplitudes, and we confirm previous results for
the quark loop amplitudes. We quantitatively analyze the hadronic cross sections
at the CERN Large Hadron Collider assuming a favorable supergravity-inspired
MSSM scenario.
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1 Introduction

The search for Higgs bosons will be among the prime tasks of the CERN Large Hadron Col-
lider (LHC) [1]. While the standard model (SM) of elementary-particle physics contains
one complex Higgs doublet, from which one neutral CP -even Higgs boson H emerges
in the physical particle spectrum after the spontaneous breakdown of the electroweak
symmetry, the Higgs sector of the minimal supersymmetric extension of the SM (MSSM)
consists of a two-Higgs-doublet model (2HDM) and accommodates five physical Higgs
bosons: the neutral CP -even h0 and H0 bosons, the neutral CP -odd A0 boson, and the
charged H±-boson pair. At the tree level, the MSSM Higgs sector has two free parameters,
which are usually taken to be the mass mA0 of the A0 boson and the ratio tanβ = v2/v1

of the vacuum expectation values of the two Higgs doublets.
In the SM, the trilinear and quartic Higgs-boson couplings are proportional to the

square of the Higgs-boson mass, and they are uniquely fixed once the latter is known. In
the MSSM, the various Higgs-boson self-couplings are determined by the gauge couplings
multiplied with trigonometric factors that depend on α, the mixing angle that rotates
the weak CP -even Higgs eigenstates into the mass eigenstates h0 and H0, and β [2] [see
Eq. (A.1)].

At the LHC, the trilinear Higgs-boson couplings may be probed by studying the inclu-
sive hadroproduction of Higgs-boson pairs. These couplings enter the stage via the Feyn-
man diagrams where a virtual neutral Higgs boson is produced in the s channel through
qq̄ annihilation or gg fusion and in turn decays into a pair of neutral or charged Higgs
bosons. Specifically, the partonic subprocesses include qq̄ → HH and gg → HH in the
SM, and qq̄ → φ1φ2, H

+H− and gg → φ1φ2, H
+H− in the MSSM, where φi = h0, H0, A0.

At the tree level, there are two mechanisms of qq̄ annihilation. On the one hand, it can
proceed via a Z boson (Drell-Yan process) if an appropriate Higgs-Higgs-Z coupling ex-
ists. On the other hand, the Higgs bosons can be radiated off the q-quark line if the
relevant Yukawa couplings are sufficiently strong. In the SM, qq̄ annihilation is greatly
suppressed due to the absence of a HHZ coupling and the smallness of the Hqq̄ cou-
plings for the active quarks contained inside the proton, q = u, d, s, c, b. In the MSSM,
however, we have h0A0Z and H0A0Z couplings at the tree level [see Eq. (A.2)], and the
φibb̄ couplings are generally strong if tan β is large [see Eq. (A.3)]. In the SM, gg fusion is
mediated via heavy-quark loops. In the MSSM, there are additional contributions from
squark loops. The SM case was studied in Ref. [3]. As for H+H− pair production, qq̄
annihilation was investigated in Refs. [4,5], the quark loop contribution to gg fusion in
Refs. [5–7], and the squark loop one in Refs. [5,7]. As for the pair production of neutral
Higgs bosons in the MSSM, qq̄ annihilation via a Z boson was analyzed in Ref. [8] and
the quark and squark loop contributions to gg fusion in Refs. [9] and [10], respectively. In
Ref. [8], also the QCD corrections to qq̄ annihilation via a Z boson and to gg fusion via
an infinitely heavy top quark were considered. The processes of associated production of
a neutral Higgs-boson pair with a dijet (in addition to the remnant jets), an intermediate
boson, or another neutral Higgs boson were found to have cross sections that are greatly
suppressed, by more than an order of magnitude, compared to those of the respective
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processes without those additional final-state particles [11].
The purpose of this paper is to reanalyze the pair production of neutral Higgs bosons

in the MSSM, both via qq̄ annihilation and gg fusion. In the case of qq̄ annihilation,
we also allow for q = b. This makes it necessary to include a new class of diagrams
involving b-quark Yukawa couplings, which are depicted in Fig. 1(a) and the second and
third lines of Fig. 1(b). These come in addition to the Drell-Yan diagram, shown in the
first line of Fig. 1(b), which is already present for q = u, d, s, c. For final states with an
even number of CP -even Higgs bosons, φ1φ2 = h0h0, h0H0, H0H0, A0A0, bb̄ annihilation
is the only production mechanism at the tree level. As we shall see, its cross section is
comparable to — and in certain areas of the MSSM parameter space even in excess of
— the one of gg fusion. For final states with an odd number of CP -even Higgs bosons,
φ1φ2 = h0A0, H0A0, bb̄ annihilation significantly enhances the Drell-Yan contribution for
large values of tanβ. As for gg fusion, we reproduce the analytical and numerical results
for the quark loop contributions of Ref. [9]. Apart from obvious typographical errors, we
also agree with the formulas for the squark loop contributions listed in Ref. [10]. However,
we find their numerical size to be considerably smaller than what was found in Ref. [10].

As for bb̄ annihilation, it should be noted that the treatment of bottom as an active
flavor inside the colliding hadrons leads to an effective description, which comprises con-
tributions from the higher-order subprocesses gb→ φ1φ2b, gb̄→ φ1φ2b̄, and gg → φ1φ2bb̄.
If all these subprocesses are to be explicitly included along with bb̄ → φ1φ2, then it is
necessary to employ a judiciously subtracted parton density function (PDF) for the b
quark in order to avoid double counting [12]. The evaluation of bb̄ → φ1φ2 with an un-
subtracted b-quark PDF is expected to slightly overestimate the true cross section [12].
For simplicity, we shall nevertheless adopt this effective approach in our analysis, keeping
in mind that a QCD-correction factor below unity is to be applied.

In order to reduce the number of unknown supersymmetric input parameters, we
adopt a scenario where the MSSM is embedded in a grand unified theory (GUT) involving
supergravity (SUGRA) [13]. The MSSM thus constrained is characterized by the following
parameters at the GUT scale, which come in addition to tanβ and mA0 : the universal
scalar mass m0, the universal gaugino mass m1/2, the trilinear Higgs-sfermion coupling A,
the bilinear Higgs coupling B, and the Higgs-higgsino mass parameter µ. Notice that mA0

is then not an independent parameter anymore, but it is fixed through the renormalization
group equation. The number of parameters can be further reduced by making additional
assumptions. Unification of the τ -lepton and b-quark Yukawa couplings at the GUT scale
leads to a correlation between mt and tan β. Furthermore, if the electroweak symmetry
is broken radiatively, then B and µ are determined up to the sign of µ. Finally, it turns
out that the MSSM parameters are nearly independent of the value of A, as long as
|A| ∼< 500 GeV at the GUT scale.

This paper is organized as follows. In Sec. 2, we list analytic results for the tree-level
cross sections of qq̄ → φ1φ2, including the Yukawa-enhanced contributions for q = b, and
the squark loop contributions to the gg → φ1φ2 amplitudes in the MSSM. The relevant
MSSM coupling constants and the squark loop form factors are relegated to Appendices A
and B, respectively. In Sec. 3, we present quantitative predictions for the inclusive cross
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section of pp → φ1φ2 + X at the LHC adopting a favorable SUGRA-inspired MSSM
scenario. Sec. 4 contains our conclusions.

2 Analytic Results

In this section, we present the tree-level cross sections of the partonic subprocesses qq̄ →
φ1φ2, where φi = h0, H0, A0, and the transition (T ) matrix elements of gg → φ1φ2 arising
from squark triangle and box diagrams.

We work in the parton model of QCD with nf = 5 active quark flavors, which we take
to be massless. However, we retain the b-quark Yukawa couplings at their finite values,
in order not to suppress possibly sizeable contributions. We adopt the MSSM Feynman
rules from Ref. [2]. In Appendix A, we list the trilinear self-couplings of the neutral Higgs
bosons and their couplings to gauge bosons and quarks. For each quark flavor q there
is a corresponding squark flavor q̃, which comes in two mass eigenstates i = 1, 2. The
masses mq̃i

of the squarks and their trilinear couplings to the h0 and H0 bosons are listed
in Eq. (A.5) of Ref. [14]1 and Eq. (A.2) of Ref. [5], respectively. Their trilinear couplings
to the A0 boson and their quartic couplings to the h0, H0, and A0 bosons may be found
in Appendix A.

Considering the generic partonic subprocess ab → φ1φ2, we denote the four-momenta
of the incoming partons, a and b, and the outgoing Higgs bosons, φ1 and φ2, by pa, pb,
p1, and p2, respectively, and define the partonic Mandelstam variables as s = (pa + pb)

2,
t = (pa − p1)

2, and u = (pb − p1)
2. The on-shell conditions read p2

a = p2
b = 0 and p2

i = hi,
where hi denotes the square of the φi-boson mass. Four-momentum conservation implies
that s + t + u = h1 + h2. Furthermore, we have sp2

T = tu− h1h2, where pT is the absolute
value of transverse momentum common to φ1 and φ2 in the center-of-mass (c.m.) frame.

The tree-level diagrams for bb̄ → φ1φ2, with φ1φ2 = h0h0, h0H0, H0H0, A0A0 and
φ1φ2 = h0A0, H0A0, are depicted in Figs. 1(a) and (b), respectively. The cross sections
for the first class of partonic subprocesses may be generically written as

dσ

dt
(bb̄ → φ1φ2) =

1

1 + δφ1φ2

G2
F m4

W

3πs

(
|S|2 + p2

T T 2
−
)
, (1)

where the prefactor accounts for identical-particle symmetrization if φ1 = φ2, GF is
Fermi’s constant, mW is the W -boson mass,

S = gφ1φ2h0gh0bbPh0(s) + gφ1φ2H0gH0bbPH0(s),

T± = gφ1bbgφ2bb

(
1

t
± 1

u

)
. (2)

Here,

PX(s) =
1

s−m2
X + imXΓX

(3)

1In Ref. [14], mq̃i is called MQ̃a.
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is the propagator function of particle X, with mass mX and total decay width ΓX . For
the second class of partonic subprocesses, we have

dσ

dt
(bb̄→ φ1φ2) =

G2
Fm4

W

3πs

[
|P |2 + p2

T (|V |2 + |A− T+|2)
]
, (4)

where

P = gφ1φ2A0gA0bbPA0(s),

V = 2gφ1φ2ZvZbbPZ(s),

A = 2gφ1φ2ZaZbbPZ(s). (5)

Here, vZbb = − (Ib − 2s2
wQb) /(2cw) and aZbb = −Ib/(2cw), with c2

w = 1 − s2
w = m2

W /m2
Z ,

are the vector and axial-vector couplings of the b quark, with weak isospin Ib = −1/2
and electric charge Qb = −1/3, to the Z boson. As for h0A0 and H0A0 production, there
are also sizeable contributions from qq̄ annihilation via a Z boson for the quarks of the
first and second generations, q = u, d, s, c. The corresponding Drell-Yan cross sections
are obtained from Eq. (4) by putting P = T+ = 0 and substituting b → q. The resulting
expression agrees with Eq. (36) of Ref. [8]. The full tree-level cross sections are then
obtained by complementing the bb̄-initiated cross sections of Eq. (4) with the Drell-Yan
cross sections for q = u, d, s, c.

The one-loop diagrams for gg → φ1φ2, with φ1φ2 = h0h0, h0H0, H0H0, A0A0 and
φ1φ2 = h0A0, H0A0, are depicted in Figs. 2(a) and (b), respectively. As for the quark
loops, our analytical results fully agree with those listed in Ref. [9], and there is no
need to repeat them here. For the partonic subprocesses of class two, the squark loop
contributions are zero [10]. This may be understood as follows. (i) The ggq̃iq̃j

and gZq̃iq̃j

couplings are linear in the squark four-momenta, while the gggq̃iq̃j
couplings are momentum

independent. Thus, the diagrams in the third line of Fig. 2(b) each vanish upon adding
their counterparts with the loop-momentum flows reversed. (ii) The ggq̃iq̃j

, gggq̃iq̃j
, gh0q̃iq̃j

,
and gH0q̃iq̃j

couplings are symmetric in i and j, while the gA0q̃iq̃j
coupling is antisymmetric.

Thus, the diagrams in the last line of Fig. 2(b) vanish upon summation over i and j. For
the partonic subprocesses of class one, the T -matrix elements corresponding to the squark
triangle and box diagrams are found to be

T̃4 =
GFm2

W√
2

αs(µr)

π
εc

µ(pa)ε
c
ν(pb)A

µν
1 F̃4,

T̃2 =
GFm2

W√
2

αs(µr)

π
εc

µ(pa)ε
c
ν(pb)

(
Aµν

1 F̃2 + Aµν
2 G̃2

)
, (6)

respectively, where αs(µr) is the strong-coupling constant at renormalization scale µr,
εc

µ(pa) is the polarization four-vector of gluon a and similarly for gluon b, it is summed
over the color index c = 1, . . . , 8,

Aµν
1 = gµν − 2

s
pµ

b pν
a,

Aµν
2 = gµν +

2

p2
T

(
h1

s
pµ

b p
ν
a +

u− h1

s
pµ

1p
ν
a +

t− h1

s
pµ

b p
ν
1 + pµ

1p
ν
1

)
, (7)
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and the form factors F̃4, F̃2, and G̃2 are listed in Appendix B. Due to Bose symmetry,
T̃4 and T̃2 are invariant under the simultaneous replacements µ ↔ ν and pa ↔ pb.
Consequently, F̃4, F̃2, and G̃2 are symmetric in t and u. Our analytic results for the
squark loop contributions agree with those given in Eqs. (8)–(10) of Ref. [10], which are
expressed in terms of helicity amplitudes.2

The parton-level cross section of gg → φ1φ2 including both quark and squark contri-
butions is then given by

dσ

dt
(gg → φ1φ2) =

1

1 + δφ1φ2

G2
Fα2

s(µr)

256(2π)3



∣∣∣∣∣∣
∑

Q=t,b

CQ
4F Q

4 + F2 −
2m2

W

s

(
F̃4 + F̃2

)∣∣∣∣∣∣
2

+

∣∣∣∣∣G2 −
2m2

W

s
G̃2

∣∣∣∣∣
2

+ |H2|2

 , (8)

where the generalized couplings CQ
4 and CQ

2 and the form factors F Q
4 , F2, and G2 may

be found in Eq. (16)–(18) and Appendix A of Ref. [9], respectively.
The kinematics of the inclusive reaction AB → CD +X, where A and B are hadrons,

which are taken to be massless, and C and D are massive particles, is described in Sec. II of
Ref. [15]. Its double-differential cross section d2σ/dy dpT , where y and pT are the rapidity
and transverse momentum of particle C in the c.m. frame of the hadronic collision, may
be evaluated from Eq. (2.1) of Ref. [15].

3 Phenomenological Implications

We are now in a position to explore the phenomenological implications of our results.
The SM input parameters for our numerical analysis are taken to be GF = 1.16639 ×
10−5 GeV−2, mW = 80.419 GeV, mZ = 91.1882 GeV, mt = 174.3 GeV , and mb = 4.6 GeV
[16]. We adopt the lowest-order (LO) proton PDF set CTEQ5L [17]. We evaluate αs(µr)
from the LO formula [16] with nf = 5 quark flavors and asymptotic scale parameter

Λ
(5)
QCD = 146 MeV [17]. We identify the renormalization and factorization scales with the

φ1φ2 invariant mass
√

s, M = µr =
√

s. We vary tanβ and mA0 in the ranges 3 < tanβ <
38 ≈ mt/mb and 90 GeV < mA0 < 1 TeV, respectively. As for the GUT parameters, we
choose m1/2 = 150 GeV, A = 0, and µ < 0, and tune m0 so as to be consistent with
the desired value of mA0 . All other MSSM parameters are then determined according to
the SUGRA-inspired scenario as implemented in the program package SUSPECT [18].
For the typical example of tanβ = 3 and mA0 = 300 GeV, the residual masses and total
decay widths of the φi bosons are mh0 = 90 GeV, mH0 = 306 GeV, Γh0 = 3 MeV,
ΓH0 = 186 MeV, and ΓA0 = 72 MeV, and the squark masses are mũ1 = mc̃1 = 412 GeV,
mũ2 = mc̃2 = 422 GeV, md̃1

= ms̃1 = 413 GeV, md̃2
= ms̃2 = 428 GeV, mt̃1 = 317 GeV,

mt̃2 = 443 GeV, mb̃1
= 384 GeV, and mb̃2

= 413 GeV, We do not impose the unification of

2There are two obvious typographical errors on the right-hand side of Eq. (10e) in Ref. [10]: There
should be an overall minus sign, and VH(i,j) q̃k q̃k

should be replaced by VH(i,j) q̃k q̃l
.
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the τ -lepton and b-quark Yukawa couplings at the GUT scale, which would just constrain
the allowed tanβ range without any visible effect on the results for these values of tan β.
We exclude solutions which do not comply with the present experimental lower mass
bounds of the sfermions, charginos, neutralinos, and Higgs bosons [19]. In our analysis,
an s-channel resonance only occurs in the process pp→ h0h0 + X if mH0 > 2mh0 .

We now study the fully integrated cross sections of pp → φ1φ2 + X at the LHC, with
c.m. energy

√
S = 14 TeV. Figures 3–8 refer to the cases φ1φ2 = h0h0, h0H0, H0H0, A0A0,

h0A0, H0A0, respectively. In part (a) of each figure, the mA0 dependence is studied for
tan β = 3 and 30 while, in part (b), the tan β dependence is studied for mA0 = 300 GeV.
We note that the SUGRA-inspired MSSM with our choice of input parameters does not
permit tanβ and mA0 to be simultaneously small, due to the experimental lower bound
on the selectron mass [19]. This explains why the curves for tanβ = 3 in Figs. 3–8(a)
only start at mA0 ≈ 240 GeV, while those for tan β = 30 already start at mA0 ≈ 90 GeV.
On the other hand, tan β and mA0 cannot be simultaneously large either, due to the
experimental lower bounds on the chargino and neutralino masses [19]. For this reason,
the curves for tanβ = 30 in Figs. 3–8(a) already end at mA0 ≈ 560 GeV. Finally, the
experimental mh0 lower bound [19] enforces tan β∼> 3 if mA0 = 300 GeV, which is reflected
in Figs. 3–8(b).

In Figs. 3–6, the bb̄-annihilation contributions (dashed lines), which originate from
Yukawa-enhanced amplitudes, and the total gg-fusion contributions (solid lines), corre-
sponding to the coherent superposition of quark and squark loop amplitudes, are presented
separately. For a comparison with future experimental data, they should be added. For
comparison, also the gg-fusion contributions due to quark loops only (dotted lines) are
shown. We first assess the relative importance of the bb̄-annihilation and gg-fusion contri-
butions. In the case of h0h0 production, bb̄ annihilation is more important than gg fusion
for intermediate values of mA0 , around 300 GeV, except at the edges of the allowed tan β
range, while it is greatly suppressed for large values of mA0 , independent of tanβ (see
Fig. 3). In the case of h0H0 production, bb̄ annihilation dominates for intermediate to
large values of mA0 and large values of tanβ, while it yields an insignificant contribution
for small values of tan β, independent of mA0 (see Fig. 4). As for H0H0 and A0A0 produc-
tion, bb̄ annihilation is suppressed compared to gg fusion. For tanβ∼> 8, the suppression
factor is modest, ranging between 2 and 3, but it dramatically increases as tanβ becomes
smaller (see Figs. 5 and 6). In order to avoid confusion, we should mention that the
bb̄-annihilation contribution for tan β = 3 is too small to be visible in Figs. 4–6(a). We
now investigate the size of the supersymmetric corrections to gg fusion, i.e., the effect of
including the squark loops. We observe that these corrections can be of either sign and
reach a magnitude of up to 90%. Specifically, for h0h0, h0H0, H0H0, and A0A0 produc-
tion, they vary within the ranges −10% to +3%, −16% to +32%, −32% to +24%, and 0%
to +90%, respectively, for the values of mA0 and tanβ considered in Figs. 3–6(a). The fact
that they are relatively modest in most cases is characteristic for our SUGRA-inspired
MSSM scenario. This is partly due to the destructive interference of quark and squark
loop amplitudes and to the suppression of the latter by heavy-squark propagators. By
contrast, in Ref. [10], the supersymmetric corrections were found reach values in excess
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of 100. Since the authors of Ref. [10] did not specify all their input parameters, we could
not reproduce their numerical results for the squark loop contributions.

In Figs. 7 and 8, the total qq̄-annihilation contributions (dashed lines), corresponding
to the coherent superposition of Drell-Yan and Yukawa-enhanced amplitudes, and the gg-
fusion contributions (solid lines), which now only receive contributions from quark loops,
are given separately. For comparison, also the pure Drell-Yan contributions (dotted lines)
are shown. Again, we first compare the total qq̄-annihilation contributions with the gg-
fusion ones. In the case of h0A0 production, qq̄ annihilation dominates for large values
of tanβ, independent of mA0 , while, at the lower end of the allowed tan β range, it is
suppressed by a factor of 40 and more, depending on the value of mA0 . On the other
hand, in the case of H0A0 production, the qq̄-annihilation contribution always overshoots
the gg-fusion one by at least one order of magnitude. We then examine the effect of
including the Yukawa-enhanced amplitudes in the evaluation of the qq̄-annihilation cross
section. In the case of h0A0 production, there is a dramatic enhancement for large values
of tanβ, which may reach several orders of magnitude for large values of mA0 . In the case
of H0A0 production, there is also an enhancement for large values of tan β, but it is much
more moderate, less than a factor of three. It is interesting to observe that the Drell-Yan
cross section of H0A0 production is fairly independent of tan β unless mA0 is close to its
lower bound. This may be understood by observing that sin(α − β), which governs the
H0A0Z coupling gH0A0Z , defined in Eq. (A.2), is then always very close to −1. This is
also apparent from Fig. 2 of Ref. [20].

At this point, we should estimate the theoretical uncertainties in our predictions. As
a typical example, we consider the cross section of pp → h0h0 + X for tan β = 3 and
mA0 = 300 GeV. In order to obtain a hint on the size of the as-yet unknown next-to-
leading-order (NLO) corrections, we define the renormalization and factorization scales
as M = µr = ξ

√
s and vary the scale parameter ξ in the range 1/2 < ξ < 2. The resulting

variation in cross section amounts to ±8% in the case of bb̄ annihilation and to ±11% in
the case of gg fusion. At NLO, one also needs to specify a renormalization scheme for
the definition of the b-quark mass, which enters our analysis through the b-quark Yukawa
coupling. Our LO analysis is appropriate for the on-mass-shell scheme, which uses pole
masses as basic parameters. The modified minimal-subtraction (MS) scheme [21] provides
a popular alternative. For example, a pole mass of mb = 4.6 GeV [16] corresponds

to an MS mass of m
(5)
b (µr) = 2.7 GeV for the typical choice of renormalization scale

µr =
√

s = 300 GeV. Recalling that the leading behaviour of Eq. (1) in mb is quadratic,
switching to the MS scheme would thus, at first sight, lead to a suppression of the cross
section by a factor of approximately 1/3. However, we must keep in mind that this
reduction should be largely cancelled, up to terms that are formally beyond NLO, by a
respective shift in the NLO correction. Another source of uncertainty is related to the
choice of PDF’s. In fact, there exist significant differences in the extraction of the b-quark
PDF among different PDF sets, which are related to the threshold treatment of the g → bb̄
splitting, the choice of the b-quark mass, the dependence of the evolution on the latter,
etc. In the case of a LO analysis with nf = 5 massless quark favours, which is considered
here, the use of CTEQ5L [17] together with the scale choice M = µr =

√
s should be
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appropriate in the sense that these issues can largely be bypassed. If we employ the LO
PDF set by Martin, Roberts, Stirling, and Thorne (MRST) [22], with Λ

(5)
QCD = 132 MeV,

then the bb̄-annihilation and gg-fusion cross sections increase by 10% and 4%, respectively,
relative to their default values.

4 Conclusions

We analytically calculated the cross sections of the partonic subprocesses qq̄ → φ1φ2 and
gg → φ1φ2, where φi = h0, H0, A0, to LO in the MSSM. We included the Drell-Yan
and Yukawa-enhanced contributions to qq̄ annihilation (see Fig. 1) and the quark and
squark loop contributions to gg fusion (see Fig. 2). We listed our formulas for the qq̄-
annihilation cross sections and the squark loop amplitudes, for which we found rather
compact expressions. As for the quark loop contributions, we found complete agreement
with Ref. [9].

We then quantitatively investigated the inclusive cross sections of pp → φ1φ2 + X
at the LHC adopting a favorable SUGRA-inspired MSSM scenario, varying the input
parameters mA0 and tanβ. The results are presented in Figs. 3–8. We found that the
Yukawa-enhanced qq̄-annihilation contribution, which had previously been neglected, can
play a leading role, especially for h0h0 production if mA0 is of order 300 GeV and for
h0H0, h0A0, and H0A0 production if tanβ is large. The supersymmetric corrections to gg
fusion, which are present for h0h0, h0H0, H0H0, and A0A0 production, can be of either
sign and reach a magnitude of up to 90%. Our numerical results for these corrections
disagree with those presented in Ref. [10]. For each process pp→ φ1φ2 +X, the combined
cross section, i.e., the sum of the full qq̄-annihilation and gg-fusion contributions, varies
by several orders of magnitude as the values of mA0 and tan β are changed within their
allowed ranges, and its maximum value is typically between 102 fb−1 and 103 fb−1. If we
assume the integrated luminosity per year to be at its design value of L = 100 fb−1 for
each of the two LHC experiments, ATLAS and CMS, then this translates into a maximum
of 20.000 to 200.000 events per year for each of these signal processes.

A comprehensive discussion of the background processes competing with the pp →
φ1φ2 + X signals at the LHC lies beyond the scope of our study. However, we should
briefly mention them and quote the relevant literature. Without specifying the decay
channels of the φi bosons, one expects the major backgrounds to arise from the pair
production of neutral gauge bosons, the associate production of a neutral gauge boson
and a neutral Higgs boson, and the continuum production of the respective φ1φ2 decay
products. Published signal-to-background analyses [23] have concentrated on the φ1φ2 →
bb̄bb̄ signals and their irreducible continuum backgrounds, due to the partonic subprocesses
gg, qq̄ → bb̄bb̄, which are dominantly of pure QCD origin. It has been demonstrated that,
after optimizing the acceptance cuts, the LHC experiments might discover a signal, with
experimental significance in excess of 5, if tanβ∼< 3 or tan β∼> 50.
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A Relevant Higgs and squark couplings

In this appendix, we list the trilinear self-couplings of the h0, H0, and A0 bosons as well
as their couplings to the Z boson and the t and b quarks. Furthermore, we collect the
couplings of these Higgs bosons to the squarks q̃i, with q = t, b and i = 1, 2, which are
not contained in Appendix A of Ref. [5]. For convenience, we introduce the short-hand
notations sα = sin α, cα = cos α, sβ = sin β, cβ = cos β, s2β = sin(2β), c2β = cos(2β),
s± = sin(α± β), and c± = cos(α± β).

The trilinear self-couplings of the h0, H0, and A0 bosons are given by [2]

gh0h0h0 =−3mZ

2cw
c2αs+, gh0h0H0 = −mZ

2cw
(2s2αs+ − c2αc+),

gh0H0H0 =
mZ

2cw
(2s2αc+ + c2αs+), gH0H0H0 = −3mZ

2cw
c2αc+,

gh0A0A0 =−mZ

2cw
c2βs+, gH0A0A0 =

mZ

2cw
c2βc+. (A.1)

Their couplings to the Z boson are given by [2]

gh0A0Z =
c−
2cw

, gH0A0Z =
s−
2cw

. (A.2)

Their couplings to the t and b quarks are given by [2]

gh0tt =− mtcα

2mW sβ
, gh0bb =

mbsα

2mW cβ
,

gH0tt =− mtsα

2mW sβ
, gH0bb = − mbcα

2mW cβ
,

gA0tt =−mt cot β

2mW
, gA0bb = −mb tanβ

2mW
. (A.3)

The missing couplings of these Higgs bosons to the squarks are given by [2]

(
gA0 t̃1 t̃1 gA0t̃1 t̃2

gA0 t̃2 t̃1 gA0t̃2 t̃2

)
=

mt(µ + At cotβ)

2mW

(
0 1
−1 0

)
,
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(
gA0b̃1 b̃1

gA0b̃1 b̃2

gA0b̃2 b̃1
gA0b̃2 b̃2

)
=

mb(µ + Ab tan β)

2mW

(
0 1
−1 0

)
,

(
gh0h0 t̃1 t̃1 gh0h0 t̃1 t̃2

gh0h0 t̃2 t̃1 gh0h0 t̃2 t̃2

)
=Mt̃




c2α(It−s2
wQt)

2c2w
− m2

t c2α
2m2

W s2
β

0

0 c2αs2
wQt

2c2w
− m2

t c2α
2m2

W s2
β


(Mt̃

)T
,

(
gh0h0 b̃1 b̃1

gh0h0b̃1 b̃2

gh0h0 b̃2 b̃1
gh0h0b̃2 b̃2

)
=Mb̃




c2α(Ib−s2
wQb)

2c2w
− m2

b
s2
α

2m2
W

c2
β

0

0 c2αs2
wQb

2c2w
− m2

bs2
α

2m2
W

c2
β


(Mb̃

)T
,

(
gh0H0 t̃1 t̃1 gh0H0 t̃1 t̃2

gh0H0 t̃2 t̃1 gh0H0 t̃2 t̃2

)
=Mt̃




s2α(It−s2
wQt)

2c2w
− m2

t s2α

4m2
W s2

β
0

0 s2αs2
wQt

2c2w
− m2

t s2α

4m2
W

s2
β


(Mt̃

)T
,

(
gh0H0b̃1 b̃1

gh0H0b̃1 b̃2

gh0H0b̃2 b̃1
gh0H0b̃2 b̃2

)
=Mb̃




s2α(Ib−s2
wQb)

2c2w
+

m2
bs2α

4m2
W c2

β
0

0 s2αs2
wQb

2c2w
+

m2
b
s2α

4m2
W c2

β


(Mb̃

)T
,

(
gH0H0 t̃1 t̃1 gH0H0 t̃1 t̃2

gH0H0 t̃2 t̃1 gH0H0 t̃2 t̃2

)
=Mt̃


−

c2α(It−s2
wQt)

2c2w
− m2

t s2
α

2m2
W

s2
β

0

0 − c2αs2
wQt

2c2w
− m2

t s2
α

2m2
W s2

β


(Mt̃

)T
,

(
gH0H0 b̃1 b̃1

gH0H0b̃1 b̃2

gH0H0 b̃2 b̃1
gH0H0b̃2 b̃2

)
=Mb̃


−

c2α(Ib−s2
wQb)

2c2w
− m2

b
c2α

2m2
W c2

β
0

0 − c2αs2
wQb

2c2w
− m2

bc2α
2m2

W
c2
β


(Mb̃

)T
,

(
gA0A0t̃1 t̃1 gA0A0 t̃1 t̃2

gA0A0t̃2 t̃1 gA0A0 t̃2 t̃2

)
=Mt̃




c2β(It−s2
wQt)

2c2w
− m2

t cot2 β

2m2
W

0

0
c2βs2

wQt

2c2w
− m2

t cot2 β

2m2
W


(Mt̃

)T
,

(
gA0A0b̃1 b̃1

gA0A0b̃1 b̃2

gA0A0b̃2 b̃1
gA0A0b̃2 b̃2

)
=Mb̃




c2β(Ib−s2
wQb)

2c2w
− m2

b
tan2 β

2m2
W

0

0
c2βs2

wQb

2c2w
− m2

b
tan2 β

2m2
W


(Mb̃

)T
.(A.4)

Here, Mq̃ denotes the mixing matrix which rotates the left- and right-handed squark
fields, q̃L and q̃R, into the mass eigenstates q̃i. Its definition may be found in Eq. (A.1)
of Ref. [5]. Relations similar to Eq. (A.4) are valid for the squarks of the first and second
generations, which are also included in our analysis. However, in these cases, we neglect
terms which are suppressed by the smallness of the corresponding light-quark masses.

B Squark loop form factors

In this appendix, we express the squark triangle and box form factors, F̃4, F̃2, and G̃2,
in terms of the standard scalar three- and four-point functions, which we abbreviate as
Cab

ijk(c) = C0

(
a, b, c, m2

q̃i
, m2

q̃j
, m2

q̃k

)
and Dabcd

ijkl (e, f) = D0

(
a, b, c, d, e, f, m2

q̃i
, m2

q̃j
, m2

q̃k
, m2

q̃l

)
,

respectively. The definitions of the latter may be found in Eq. (5) of Ref. [24].
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We have

F̃4 =
∑
q̃

2∑
i=1

(gφ1φ2h0gh0q̃iq̃i
Ph0(s) + gφ1φ2H0gH0q̃iq̃i

PH0(s)− gφ1φ2q̃iq̃i
)F1

(
s, m2

q̃i

)
,

F̃2 =
2

s

∑
q̃

2∑
i,j=1

gφ1q̃iq̃j
gφ2q̃j q̃i

F2

(
s, t, h1, h2, m

2
q̃i
, m2

q̃j

)
,

G̃2 =
2

sp2
T

∑
q̃

2∑
i,j=1

gφ1q̃iq̃j
gφ2q̃j q̃i

F3

(
s, t, h1, h2, m

2
q̃i
, m2

q̃j

)
. (B.1)

Here, we have introduced the auxiliary functions

F1

(
s, m2

q̃i

)
= 2 + 4m2

q̃i
C00

iii(s),

F2

(
s, t, h1, h2, m

2
q̃i
, m2

q̃j

)
=−t1C

h10
ijj (t)− t2C

h20
ijj (t) + 2sm2

q̃i
Dh1h200

ijii (s, t) + s

(
p2

T

2
+ m2

q̃i

)

×Dh10h20
ijji (t, u) + (t↔ u),

F3

(
s, t, h1, h2, m

2
q̃i
, m2

q̃j

)
=−s

(
t + m2

q̃i

)
C000

iii (s) + sm2
q̃i
C000

jjj (s)− tt1C
h10
ijj (t)− tt2C

h20
ijj (t)

+ (t2 − h1h2)C
h1h2
iji (s) +

[
st2 − 2t1t2m

2
q̃i

+ 2sm2
q̃i

(
m2

q̃i
−m2

q̃j

)]
×Dh1h200

ijii (s, t)− 2stm2
q̃i
Dh1h200

jijj (s, t) + sm2
q̃i

(
p2

T + m2
q̃i
−m2

q̃j

)
×Dh10h20

ijji (t, u) + (t↔ u), (B.2)

where ti = t− hi.
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Figure 1: Tree-level Feynman diagrams for qq̄ → φ1φ2, with (a) φ1φ2 =
h0h0, h0H0, H0H0, A0A0 and (b) φ1φ2 = h0A0, H0A0, in the MSSM.
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Figure 2: One-loop Feynman diagrams for gg → φ1φ2, with (a) φ1φ2 =
h0h0, h0H0, H0H0, A0A0 and (b) φ1φ2 = h0A0, H0A0, due to virtual quarks and squarks
in the MSSM.
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Figure 3: Total cross sections σ (in fb) of pp→ h0h0+X via bb̄ annihilation (dashed lines)
and gg fusion (solid lines) at the LHC (a) as functions of mA0 for tanβ = 3 (starting at
mA0 = 240 GeV) and 30 (starting at mA0 = 90 GeV); and (b) as functions of tan β for
mA0 = 300 GeV. For comparison, also the quark loop contribution to gg fusion (dotted
lines) is shown.
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Figure 4: Total cross sections σ (in fb) of pp → h0H0 + X via bb̄ annihilation (dashed
lines) and gg fusion (solid lines) at the LHC (a) as functions of mA0 for tanβ = 3 (starting
at mA0 = 240 GeV) and 30 (starting at mA0 = 90 GeV); and (b) as functions of tan β for
mA0 = 300 GeV. For comparison, also the quark loop contribution to gg fusion (dotted
lines) is shown.
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Figure 5: Total cross sections σ (in fb) of pp → H0H0 + X via bb̄ annihilation (dashed
lines) and gg fusion (solid lines) at the LHC (a) as functions of mA0 for tanβ = 3 (starting
at mA0 = 240 GeV) and 30 (starting at mA0 = 90 GeV); and (b) as functions of tan β for
mA0 = 300 GeV. For comparison, also the quark loop contribution to gg fusion (dotted
lines) is shown.
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pp → AA + X
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Figure 6: Total cross sections σ (in fb) of pp → A0A0 + X via bb̄ annihilation (dashed
lines) and gg fusion (solid lines) at the LHC (a) as functions of mA0 for tanβ = 3 (starting
at mA0 = 240 GeV) and 30 (starting at mA0 = 90 GeV); and (b) as functions of tan β for
mA0 = 300 GeV. For comparison, also the quark loop contribution to gg fusion (dotted
lines) is shown.
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pp → Ah + X
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Figure 7: Total cross sections σ (in fb) of pp → h0A0 + X via qq̄ annihilation (dashed
lines) and gg fusion (solid lines) at the LHC (a) as functions of mA0 for tanβ = 3 (starting
at mA0 = 240 GeV) and 30 (starting at mA0 = 90 GeV); and (b) as functions of tan β
for mA0 = 300 GeV. For comparison, also the Drell-Yan contribution to qq̄ annihilation
(dotted lines) is shown.
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pp → AH + X
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Figure 8: Total cross sections σ (in fb) of pp → H0A0 + X via qq̄ annihilation (dashed
lines) and gg fusion (solid lines) at the LHC (a) as functions of mA0 for tanβ = 3 (starting
at mA0 = 240 GeV) and 30 (starting at mA0 = 90 GeV); and (b) as functions of tan β
for mA0 = 300 GeV. For comparison, also the Drell-Yan contribution to qq̄ annihilation
(dotted lines) is shown.
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