6 research outputs found

    Gravitational lensing by stars with angular momentum

    Full text link
    Gravitational lensing by spinning stars, approximated as homogeneous spheres, is discussed in the weak field limit. Dragging of inertial frames, induced by angular momentum of the deflector, breaks spherical symmetry. I examine how the gravito-magnetic field affects image positions, caustics and critical curves. Distortion in microlensing-induced light curves is also considered.Comment: 9 pages, 9 figures; to appear in MNRA

    A nongravitational wormhole

    Get PDF
    Using the effective metric formalism for photons in a nonlinear electromagnetic theory, we show that a certain field configuration in Born-Infeld electromagnetism in flat spacetime can be interpreted as an ultrastatic spherically symmetric wormhole. We also discuss some properties of the effective metric that are valid for any field configuration.Comment: LaTex, 9 pages with 5 figures, minor changes, accepted for publication in Class. Quantum Gra

    Geometrical aspects of light propagation in nonlinear electrodynamics

    Get PDF
    We analyze the propagation of light in the context of nonlinear electrodynamics, as it occurs in modified QED vacua. We show that the corresponding characteristic equation can be described in terms of a modification of the effective geometry of the underlying spacetime structure. We present the general form for this effective geometry and exhibit some new consequences that result from such approach.Comment: LaTex, 11 pages, accepted for publication in Phys. Rev.
    corecore