16 research outputs found
Immunogenicity and reactogenicity of modified vaccinia Ankara pre-exposure vaccination against mpox according to previous smallpox vaccine exposure and HIV infection. Prospective cohort study
Background: Pre-exposure vaccination with MVA-BN has been widely used against mpox to contain the 2022 outbreak. Many countries have defined prioritized strategies, administering a single dose to those historically vaccinated for smallpox, to achieve quickly adequate coverage in front of low supplies. Using epidemiological models, real-life effectiveness was estimated at approximately 36%-86%, but no clinical trials were performed. Few data on MVA-BN immunogenicity are currently available, and there are no established correlates of protection. Immunological response in PLWH in the context of the 2022 outbreak was also poorly described. Methods: Blood samples were collected from participants eligible for pre-exposure MVA-BN vaccination before (T1) receiving a full course of vaccine (single-dose for vaccine-experienced or smallpox-primed and two-dose for smallpox vaccine-naïve or smallpox non-primed) and one month after the last dose (T2 and T3, respectively). MPXV-specific IgGs were measured by in-house immunofluorescence assay, using 1:20 as screening dilution, MPXV-specific nAbs by 50% plaque reduction neutralization test (PRNT50, starting dilution 1:10), and IFN-γ-producing specific T cells to MVA-BN vaccine, by ELISpot assay. Paired or unpaired t-test and Wilcoxon or Mann-Whitney test were used to analyse IgG and nAbs, and T-cell response, as appropriate. The probability of IgG and nAb response in vaccine-experienced vs. vaccine-naïve was estimated in participants not reactive at T1. The McNemar test was used to evaluate vaccination's effect on humoral response both overall and by smallpox vaccination history. In participants who were not reactive at T1, the proportion of becoming responders one month after full-cycle completion by exposure groups was compared by logistic regression and then analysed by HIV status strata (interaction test). The response was also examined in continuous, and the Average Treatment Effect (ATE) of the difference from baseline to schedule completion according to previous smallpox vaccination was estimated after weighting for HIV using a linear regression model. Self-reports of adverse effects following immunization (AEFIs) were prospectively collected after the first MVA-BN dose (T1). Systemic (S-AEFIs: fatigue, myalgia, headache, GI effects, chills) and local (L-AEFIs: redness, swelling, pain) AEFIs were graded as absent (grade 0), mild (1), moderate (2), or severe (3). The maximum level of severity for S-AEFIs and L-AEFIs ever experienced over the 30 days post-dose by vaccination exposure groups were analysed using a univariable multinomial logistic regression model and after adjusting for HIV status; for each of the symptoms, we also compared the mean duration by exposure group using an unpaired t-test. Findings: Among the 164 participants included, 90 (54.8%) were smallpox vaccine-experienced. Median age was 49 years (IQR 41-55). Among the 76 (46%) PLWH, 76% had a CD4 count >500 cells/μL. There was evidence that both the IgG and nAbs titers increased after administration of the MVA-BN vaccine. However, there was no evidence for a difference in the potential mean change in humoral response from baseline to the completion of a full cycle when comparing primed vs. non-primed participants. Similarly, there was no evidence for a difference in the seroconversion rate after full cycle vaccination in the subset of participants not reactive for nAbs at T1 (p = 1.00 by Fisher's exact test). In this same analysis and for the nAbs outcome, there was some evidence of negative effect modification by HIV (interaction p-value = 0.17) as primed people living with HIV (PLWH) showed a lower probability of seroconversion vs. non-primed, and the opposite was seen in PLWoH. When evaluating the response in continuous, we observed an increase in T-cell response after MVA-BN vaccination in both primed and non-primed. There was evidence for a larger increase when using the 2-dose vs. one-dose strategy with a mean difference of -2.01 log2 (p ≤ 0.0001), after controlling for HIV. No evidence for a difference in the risk of developing any AEFIs of any grade were observed by exposure group, except for the lower risk of grade 2 (moderate) fatigue, induration and local pain which was lower in primed vs. non-primed [OR 0.26 (0.08-0.92), p = 0.037; OR 0.30 (0.10-0.88), p = 0.029 and OR 0.19 (0.05-0.73), p = 0.015, respectively]. No evidence for a difference in symptom duration was also detected between the groups. Interpretation: The evaluation of the humoral and cellular response one month after the completion of the vaccination cycle suggested that MVA-BN is immunogenic and that the administration of a two-dose schedule is preferable regardless of the previous smallpox vaccination history, especially in PLWH, to maximize nAbs response. MVA-BN was safe as well tolerated, with grade 2 reactogenicity higher after the first administration in vaccine-naïve than in vaccine-experienced individuals, but with no evidence for a difference in the duration of these adverse effects. Further studies are needed to evaluate the long-term duration of immunity and to establish specific correlates of protection. Funding: The study was supported by the National Institute for Infectious Disease Lazzaro Spallanzani IRCCS "Advanced grant 5 × 1000, 2021" and by the Italian Ministry of Health "Ricerca Corrente Linea 2"
Immunogenicity and reactogenicity of modified vaccinia Ankara pre-exposure vaccination against mpox according to previous smallpox vaccine exposure and HIV infection: prospective cohort study
BACKGROUND: Pre-exposure vaccination with MVA-BN has been widely used against mpox to contain the 2022 outbreak. Many countries have defined prioritized strategies, administering a single dose to those historically vaccinated for smallpox, to achieve quickly adequate coverage in front of low supplies. Using epidemiological models, real-life effectiveness was estimated at approximately 36%–86%, but no clinical trials were performed. Few data on MVA-BN immunogenicity are currently available, and there are no established correlates of protection. Immunological response in PLWH in the context of the 2022 outbreak was also poorly described. METHODS: Blood samples were collected from participants eligible for pre-exposure MVA-BN vaccination before (T1) receiving a full course of vaccine (single-dose for vaccine-experienced or smallpox-primed and two-dose for smallpox vaccine-naïve or smallpox non-primed) and one month after the last dose (T2 and T3, respectively). MPXV-specific IgGs were measured by in-house immunofluorescence assay, using 1:20 as screening dilution, MPXV-specific nAbs by 50% plaque reduction neutralization test (PRNT50, starting dilution 1:10), and IFN-γ-producing specific T cells to MVA-BN vaccine, by ELISpot assay. Paired or unpaired t-test and Wilcoxon or Mann–Whitney test were used to analyse IgG and nAbs, and T-cell response, as appropriate. The probability of IgG and nAb response in vaccine-experienced vs. vaccine-naïve was estimated in participants not reactive at T1. The McNemar test was used to evaluate vaccination's effect on humoral response both overall and by smallpox vaccination history. In participants who were not reactive at T1, the proportion of becoming responders one month after full-cycle completion by exposure groups was compared by logistic regression and then analysed by HIV status strata (interaction test). The response was also examined in continuous, and the Average Treatment Effect (ATE) of the difference from baseline to schedule completion according to previous smallpox vaccination was estimated after weighting for HIV using a linear regression model. Self-reports of adverse effects following immunization (AEFIs) were prospectively collected after the first MVA-BN dose (T1). Systemic (S-AEFIs: fatigue, myalgia, headache, GI effects, chills) and local (L-AEFIs: redness, swelling, pain) AEFIs were graded as absent (grade 0), mild (1), moderate (2), or severe (3). The maximum level of severity for S-AEFIs and L-AEFIs ever experienced over the 30 days post-dose by vaccination exposure groups were analysed using a univariable multinomial logistic regression model and after adjusting for HIV status; for each of the symptoms, we also compared the mean duration by exposure group using an unpaired t-test. FINDING: Among the 164 participants included, 90 (54.8%) were smallpox vaccine-experienced. Median age was 49 years (IQR 41–55). Among the 76 (46%) PLWH, 76% had a CD4 count >500 cells/μL. There was evidence that both the IgG and nAbs titers increased after administration of the MVA-BN vaccine. However, there was no evidence for a difference in the potential mean change in humoral response from baseline to the completion of a full cycle when comparing primed vs. non-primed participants. Similarly, there was no evidence for a difference in the seroconversion rate after full cycle vaccination in the subset of participants not reactive for nAbs at T1 (p = 1.00 by Fisher's exact test). In this same analysis and for the nAbs outcome, there was some evidence of negative effect modification by HIV (interaction p-value = 0.17) as primed people living with HIV (PLWH) showed a lower probability of seroconversion vs. non-primed, and the opposite was seen in PLWoH. When evaluating the response in continuous, we observed an increase in T-cell response after MVA-BN vaccination in both primed and non-primed. There was evidence for a larger increase when using the 2-dose vs. one-dose strategy with a mean difference of −2.01 log2 (p ≤ 0.0001), after controlling for HIV. No evidence for a difference in the risk of developing any AEFIs of any grade were observed by exposure group, except for the lower risk of grade 2 (moderate) fatigue, induration and local pain which was lower in primed vs. non-primed [OR 0.26 (0.08–0.92), p = 0.037; OR 0.30 (0.10–0.88), p = 0.029 and OR 0.19 (0.05–0.73), p = 0.015, respectively]. No evidence for a difference in symptom duration was also detected between the groups. INTERPRETATION: The evaluation of the humoral and cellular response one month after the completion of the vaccination cycle suggested that MVA-BN is immunogenic and that the administration of a two-dose schedule is preferable regardless of the previous smallpox vaccination history, especially in PLWH, to maximize nAbs response. MVA-BN was safe as well tolerated, with grade 2 reactogenicity higher after the first administration in vaccine-naïve than in vaccine-experienced individuals, but with no evidence for a difference in the duration of these adverse effects. Further studies are needed to evaluate the long-term duration of immunity and to establish specific correlates of protection
Peripheral blood HIV-1 DNA dynamics in antiretroviral-treated HIV/HCV co-infected patients receiving directly-acting antivirals.
Aim was to determine the dynamics of peripheral blood mononuclear cells (PBMC)- associated total HIV-1 DNA in successfully ART-treated HIV/HCV co-infected patients receiving DAA treatment and to explore possible virological hypotheses underlying the phenomenon.Longitudinal, single-centre study measuring total HIV-1 DNA before the start of DAA, at the end of treatment (EOT), and 3 months after treatment. Univariable and multivariable analyses were used to assess factors associated with HIV-1 DNA increase ≥0.5 Log copies/million PBMC. Episomal 2-LTR forms, residual HIV-1 viremia and proviral DNA quasispecies evolution were also investigated.119 successfully ART-treated HIV/HCV co-infected patients were included. Median baseline HIV-1 DNA was 3.84 Log copies/million PBMC (95%CI 3.49-4.05), and no significant variation with respect to baseline was found at EOT and after 3 months of DAA termination. In 17% of cases an increase ≥0.5 Log copies/million PBMC was observed at EOT compared to baseline. HIV-1 DNA increase was independently associated with lower baseline HIV-1 DNA, longer HIV suppression, raltegravir-based ART and previous exposure to interferon/ribavirin for HCV treatment. In none of the patients with HIV-1 DNA increase, 2-LTR forms were detected at baseline, while in 2 cases 2-LTR forms were found at EOT, without association with residual HIV-1 RNA viremia. No evidence of viral evolution was observed.In successfully ART-treated HIV/HCV co-infected patients receiving DAA, PBMC-associated total HIV-1 DNA was quite stable over time, but some patients showed a considerable increase at EOT when compared to baseline. A significantly higher risk of HIV DNA increase was found, in presence of lower cellular HIV reservoir at baseline. Activation of replicative-competent virus generating new rounds of viral replication seems unlikely, while mobilization of cell-associated HIV from tissue reservoirs could be hypothesized
Molecular Transmission Dynamics of Primary HIV Infections in Lazio Region, Years 2013–2020
Molecular investigation of primary HIV infections (PHI) is crucial to describe current dynamics of HIV transmission. Aim of the study was to investigate HIV transmission clusters (TC) in PHI referred during the years 2013–2020 to the National Institute for Infectious Diseases in Rome (INMI), that is the Lazio regional AIDS reference centre, and factors possibly associated with inclusion in TC. These were identified by phylogenetic analysis, based on population sequencing of pol; a more in depth analysis was performed on TC of B subtype, using ultra-deep sequencing (UDS) of env. Of 270 patients diagnosed with PHI during the study period, 229 were enrolled (median follow-up 168 (IQR 96–232) weeks). Median age: 39 (IQR 32–48) years; 94.8% males, 86.5% Italians, 83.4% MSM, 56.8% carrying HIV-1 subtype B. Of them, 92.6% started early treatment within a median of 4 (IQR 2–7) days after diagnosis; median time to sustained suppression was 20 (IQR 8–32) weeks. Twenty TC (median size 3, range 2–9 individuals), including 68 patients, were identified. A diagnosis prior to 2015 was the unique factor associated with inclusion in a TC. Added value of UDS was the identification of shared quasispecies components in transmission pairs within TC
Molecular Transmission Dynamics of Primary HIV Infections in Lazio Region, Years 2013–2020
Molecular investigation of primary HIV infections (PHI) is crucial to describe current dynamics of HIV transmission. Aim of the study was to investigate HIV transmission clusters (TC) in PHI referred during the years 2013–2020 to the National Institute for Infectious Diseases in Rome (INMI), that is the Lazio regional AIDS reference centre, and factors possibly associated with inclusion in TC. These were identified by phylogenetic analysis, based on population sequencing of pol; a more in depth analysis was performed on TC of B subtype, using ultra-deep sequencing (UDS) of env. Of 270 patients diagnosed with PHI during the study period, 229 were enrolled (median follow-up 168 (IQR 96–232) weeks). Median age: 39 (IQR 32–48) years; 94.8% males, 86.5% Italians, 83.4% MSM, 56.8% carrying HIV-1 subtype B. Of them, 92.6% started early treatment within a median of 4 (IQR 2–7) days after diagnosis; median time to sustained suppression was 20 (IQR 8–32) weeks. Twenty TC (median size 3, range 2–9 individuals), including 68 patients, were identified. A diagnosis prior to 2015 was the unique factor associated with inclusion in a TC. Added value of UDS was the identification of shared quasispecies components in transmission pairs within TC
Virological and Immunological Outcomes of an Intensified Four-Drug versus a Standard Three-Drug Antiretroviral Regimen, Both Integrase Strand Transfer Inhibitor-Based, in Primary HIV Infection
The optimal therapeutic approach for primary HIV infection (PHI) is still debated. We aimed to compare the viroimmunological response to a four- versus a three-drug regimen, both INSTI-based, in patients with PHI. This was a monocentric, prospective, observational study including all patients diagnosed with PHI from December 2014 to April 2018. Antiretroviral therapy (ART) was started, before genotype resistance test results, with tenofovir/emtricitabine and either raltegravir plus boosted darunavir or dolutegravir. Cumulative probability of virological suppression [VS] (HIV-1 RNA< 40 cp/mL), low-level HIV-1 DNA [LL-HIVDNA] (HIV-1 DNA < 200 copies/106PBMC), and CD4/CD8 ratio ≥1 were estimated using Kaplan–Meier curves. Factors associated with the achievement of VS, LL-HIVDNA, and CD4/CD8 ≥ 1 were assessed by a Cox regression model. We enrolled 144 patients (95.8% male, median age 34 years): 110 (76%) started a four-drug-based therapy, and 34 (24%) a three-drug regimen. Both treatment groups showed a comparable high probability of achieving VS and a similar probability of reaching LL-HIVDNA and a CD4/CD8 ratio ≥1 after 48 weeks from ART initiation. Higher baseline HIV-1 RNA and HIV-1 DNA levels lowered the chance of VS, whereas a better preserved immunocompetence increased that chance. Not statistically significant factors associated with LL-HIVDNA achievement were found, whereas a higher baseline CD4/CD8 ratio predicted the achievement of immune recovery. In PHI patients, the rapid initiation of either an intensified four-drug or a standard three-drug INSTI-based regimen showed comparable responses in terms of VS, viral reservoir size, and immunological recovery
The scatterplot of baseline HIV-1 DNA levels and change between EOT and baseline.
<p>The scatterplot of baseline HIV-1 DNA levels and change between EOT and baseline.</p