2 research outputs found

    The Value of High Intensity Locomotor Training Applied to Patients With Acute-Onset Neurologic Injury

    Get PDF
    The purpose of this review is to delineate some of the evidence regarding the effects of exercise intensity during locomotor training in patients with stroke and iSCI. We provide specific definitions of exercise intensity used within the literature, describe methods used to ensure appropriate levels of exertion, and discuss potential adverse events and safety concerns during its application. Further details on the effects of locomotor training intensity on clinical outcomes, and on neuromuscular and cardiovascular function will be addressed as available. Existing literature across multiple studies and meta-analyses reveals that exercise training intensity is likely a major factor that can influence locomotor function after neurologic injury. To extend these findings, we describe previous attempts to implement moderate to high intensity interventions during physical rehabilitation of patients with neurologic injury, including the utility of specific strategies to facilitate implementation, and to navigate potential barriers that may arise during implementation efforts

    Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals with Chronic Spinal Cord Injury: A Randomized Crossover Study

    Get PDF
    Background. Many research studies attempting to improve locomotor function following motor incomplete spinal cord injury (iSCI) focus on providing stepping practice. However, observational studies of physical therapy strategies suggest the amount of stepping practice during clinical rehabilitation is limited; rather, many interventions focus on mitigating impairments underlying walking dysfunction. Objective. The purpose of this blinded-assessor randomized trial was to evaluate the effects of task-specific versus impairment-based interventions on walking outcomes in individuals with iSCI. Methods. Using a crossover design, ambulatory participants with iSCI \u3e1-year duration performed either task-specific (upright stepping) or impairment-based training for up to 20 sessions over ≤6 weeks, with interventions alternated after \u3e4 weeks delay. Both strategies focused on achieving higher cardiovascular intensities, with training specificity manipulated by practicing only stepping practice in variable contexts or practicing tasks targeting impairments underlying locomotor dysfunction (strengthening, balance tasks, and recumbent stepping). Results. Significantly greater increases in fastest overground and treadmill walking speeds were observed following task-specific versus impairment-based training, with moderate associations between differences in amount of practice and outcomes. Gains in balance confidence were also observed following task-specific vs impairment-based training, although incidence of falls was also increased with the former protocol. Limited gains were observed with impairment-based training except for peak power during recumbent stepping tests. Conclusion. The present study reinforces work from other patient populations that the specificity of task practice is a critical determinant of locomotor outcomes and suggest impairment-based exercises may not translate to improvements in functional tasks
    corecore