307 research outputs found
The Massive Disk Around OH 231.8+4.2
We have obtained 11.7 micron and 17.9 micron images at the Keck I telescope
of the circumstellar dust emission from OH 231.8+4.2, an evolved mass-losing
red giant with a well studied bipolar outflow. We detect both a central
unresolved point source and extended emission which is aligned with the bipolar
outflow seen on larger scales. We find that the unresolved central source can
be explained by an opaque, flared disk with an outer radius near 300 AU and an
outer temperature of about 130 K. One possible model to explain this flaring is
that the material in the disk is orbiting the central star and not simply
undergoing a radial expansion.Comment: ApJ, in pres
Globular Cluster Formation in M82
We present high resolution mid-infrared (mid-IR; 11.7 and 17.65 micron) maps
of the central 400 pc region of the starburst galaxy M82. Seven star forming
clusters are identified which together provide ~ 15% of the total mid-IR
luminosity of the galaxy. Combining the mid-IR data with thermal radio
measurements and near- and mid-IR line emission, we find that these young
stellar clusters have inferred masses and sizes comparable to globular
clusters. At least 20% of the star formation in M82 is found to occur in
super-star clusters.Comment: 12 pages including three color figures; accepted for publication in
Ap
The identification of 93 day periodic photometric variability for YSO YLW 16A
Aims. Periodic variability in young stellar objects (YSOs) offers indirect evidence for an active dynamical mechanism. Starspots, accretion, stellar companions, and disk veiling can contribute to the photometric variability of YSOs.
Methods. As part of an ongoing study of the ρ Oph star forming region, we report the discovery of 92.6 day periodic variations for the Class I YSO YLW 16A, observed over a period of three years. A SED model was fit to available photometric data for the object.
Results. We propose a triple-system with an inner binary with a period of 93 days eclipsed by a warped circum-binary disk. The nature of the secondary is unconstrained and could be stellar or sub-stellar. We confirm the discovery of a tertiary companion at a projected separation of ~40 AU that could account for the circum-binary disk warp. This light curve and model is similar to the model we proposed for WL 4 in previous work. Understanding these systems may lead to insights about the nature of stellar evolution and planetary formation, and provide valuable benchmarks for future theoretical modeling and near- and mid-infrared synoptic surveys of YSOs
Debris Disks around Solar-Type Stars: Observations of the Pleiades with Spitzer Space Telescope
We present Spitzer MIPS observations at 24 um of 37 solar-type stars in the
Pleiades and combine them with previous observations to obtain a sample of 71
stars. We report that 23 stars, or 32 +/- 6.8%, have excesses at 24 um at least
10% above their photospheric emission. We compare our results with studies of
debris disks in other open clusters and with a study of A stars to show that
debris disks around solar-type stars at 115 Myr occur at nearly the same rate
as around A-type stars. We analyze the effects of binarity and X-ray activity
on the excess flux. Stars with warm excesses tend not to be in equal-mass
binary systems, possibly due to clearing of planetesimals by binary companions
in similar orbits. We find that the apparent anti-correlations in the incidence
of excess and both the rate of stellar rotation and also the level of activity
as judged by X-ray emission are statistically weak.Comment: 34 pages; accepted for publication in ApJ; new version included
corrections of typos, etc to match published versio
Ysovar: The First Sensitive, Wide-area, Mid-infrared Photometric Monitoring of the Orion Nebula Cluster
We present initial results from time-series imaging at infrared wavelengths of 0.9 deg^2 in the Orion Nebula Cluster (ONC). During Fall 2009 we obtained 81 epochs of Spitzer 3.6 and 4.5 μm data over 40 consecutive days. We extracted light curves with ~3% photometric accuracy for ~2000 ONC members ranging from several solar masses down to well below the hydrogen-burning mass limit. For many of the stars, we also have time-series photometry obtained at optical (I_c) and/or near-infrared (JK_s ) wavelengths. Our data set can be mined to determine stellar rotation periods, identify new pre-main-sequence eclipsing binaries, search for new substellar Orion members, and help better determine the frequency of circumstellar disks as a function of stellar mass in the ONC. Our primary focus is the unique ability of 3.6 and 4.5 μm variability information to improve our understanding of inner disk processes and structure in the Class I and II young stellar objects (YSOs). In this paper, we provide a brief overview of the YSOVAR Orion data obtained in Fall 2009 and highlight our light curves for AA-Tau analogs—YSOs with narrow dips in flux, most probably due to disk density structures passing through our line of sight. Detailed follow-up observations are needed in order to better quantify the nature of the obscuring bodies and what this implies for the structure of the inner disks of YSOs
Demonstration of a Near-IR Laser Comb for Precision Radial Velocity Measurements in Astronomy
We describe a successful effort to produce a laser comb around 1.55 m in
the astronomical H band using a method based on a line-referenced,
electro-optical-modulation frequency comb. We discuss the experimental setup,
laboratory results, and proof of concept demonstrations at the NASA Infrared
Telescope Facility (IRTF) and the Keck-II telescope. The laser comb has a
demonstrated stability of 200 kHz, corresponding to a Doppler precision of
~0.3 m/s. This technology, when coupled with a high spectral resolution
spectrograph, offers the promise of 1 m/s radial velocity precision suitable
for the detection of Earth-sized planets in the habitable zones of cool M-type
stars
Hubble and Spitzer Space Telescope Observations of the Debris Disk around the Nearby K Dwarf HD 92945
[ABRIDGED] We present the first resolved images of the debris disk around the
nearby K dwarf HD 92945. Our F606W (V) and F814W (I) HST/ACS coronagraphic
images reveal an inclined, axisymmetric disk consisting of an inner ring
2".0-3".0 (43-65 AU) from the star and an extended outer disk whose surface
brightness declines slowly with increasing radius 3".0-5".1 (65-110 AU) from
the star. A precipitous drop in the surface brightness beyond 110 AU suggests
that the outer disk is truncated at that distance. The radial surface-density
profile is peaked at both the inner ring and the outer edge of the disk. The
dust in the outer disk scatters neutrally but isotropically, and it has a low
V-band albedo of 0.1. We also present new Spitzer MIPS photometry and IRS
spectra of HD 92945. These data reveal no infrared excess from the disk
shortward of 30 micron and constrain the width of the 70 micron source to < 180
AU. Assuming the dust comprises compact grains of astronomical silicate with a
surface-density profile described by our scattered-light model of the disk, we
successfully model the 24-350 micron emission with a minimum grain size of
a_min = 4.5 micron and a size distribution proportional to a^-3.7 throughout
the disk, but with a maximum grain size of 900 micron in the inner ring and 50
micron in the outer disk. Our observations indicate a total dust mass of ~0.001
M_earth. However, they provide contradictory evidence of the dust's physical
characteristics: its neutral V-I color and lack of 24 micron emission imply
grains larger than a few microns, but its isotropic scattering and low albedo
suggest a large population of submicron-sized grains. The dynamical causes of
the disk's morphology are unclear, but recent models of dust creation and
transport in the presence of migrating planets indicate an advanced state of
planet formation around HD 92945.Comment: 29 pages, 10 figures; to be published in The Astronomical Journa
- …