11 research outputs found

    Mutant screen reveals the Piccolo's control over depression and brain-gonad crosstalk

    Get PDF
    Successful sexual reproduction involves a highly complex, genetically encoded interplay between animal physiology and behavior. Here we developed a screen to identify genes essential for rat reproduction based on an unbiased methodology involving mutagenesis via the Sleeping Beauty transposon. As expected, our screen identified genes where reproductive failure was connected to gametogenesis (Btrc, Pan3, Spaca6, Ube2k) and embryogenesis (Alk3, Exoc6b, Slc1a3, Tmx4, Zmynd8). In addition, our screen identified Atg13 (longevity) Dlg1 and Pclo (neuronal disorders), previously not associated with reproduction. Dominant Pclo traits caused epileptiform activity and affected genes supporting GABAergic synaptic transmission (Gabra6, Gabrg3), and animals exhibited a compromised crosstalk between the brain and gonads via disturbed GnRH signaling. Recessive Pclo traits disrupted conspecific recognition required for courtship/mating and were mapped to allelic markers for major depressive disorder (Grm5, Htr2a, Sorcs3, Negr1, Drd2). Thus, Pclo-deficiency in rats link neural networks controlling sexual motivation to Pclo variants that have been associated with human neurological disorders

    Loss of Piccolo function in rats induces cerebellar network dysfunction and Pontocerebellar Hypoplasia type 3-like phenotypes

    No full text
    Piccolo, a presynaptic active zone protein, is best known for its role in the regulated assembly and function of vertebrate synapses. Genetic studies suggest a further link to several psychiatric disorders as well as Pontocerebellar Hypoplasia type 3 (PCH3). We have characterized recently generated Piccolo knockout (Pclo(gt/gt)) rats. Analysis of rats of both sexes revealed a dramatic reduction in brain size compared to wildtype (Pclo(wt/wt)) animals, attributed to a decrease in the size of the cerebral cortical, cerebellar and pontine regions. Analysis of the cerebellum and brainstem revealed a reduced granule cell (GC) layer and a reduction in size of pontine nuclei. Moreover, the maturation of mossy fiber (MF) afferents from pontine neurons and the expression of the α6 GABA(A) receptor subunit at the MF-GC synapse are perturbed, as well as the innervation of Purkinje cells by cerebellar climbing fibers (CFs). Ultrastructural and functional studies revealed a reduced size of MF boutons, with fewer synaptic vesicles and altered synaptic transmission. These data imply that Piccolo is required for the normal development, maturation and function of neuronal networks formed between the brainstem and cerebellum. Consistently, behavioral studies demonstrated that adult Pclo(gt/gt) rats display impaired motor coordination, despite adequate performance in tasks that reflect muscle strength and locomotion. Together these data suggest that loss of Piccolo function in patients with PCH3 could be involved in many of the observed anatomical and behavioral symptoms, and that the further analysis of these animals could provide fundamental mechanistic insights into this devastating disorder. SIGNIFICANCE STATEMENT: Pontocerebellar Hypoplasia type 3 (PCH3) is a devastating developmental disorder associated with severe developmental delay, progressive microcephaly with brachycephaly, optic atrophy, seizures and hypertonia with hyperreflexia. Recent genetic studies have identified non-sense mutations in the coding region of the Piccolo gene, suggesting a functional link between this disorder and the presynaptic active zone. Our analysis of Piccolo knockout rats supports this hypothesis, formally demonstrating that anatomical and behavioral phenotypes seen in patients with PCH3 are also exhibited by these Piccolo deficient animals

    Short-Chain Fatty Acids Improve Poststroke Recovery via Immunological Mechanisms

    Get PDF
    Recovery after stroke is a multicellular process encompassing neurons, resident immune cells, and brain-invading cells. Stroke alters the gut microbiome, which in turn has considerable impact on stroke outcome. However, the mechanisms underlying gut-brain interaction and implications for long-term recovery are largely elusive. Here, we tested the hypothesis that short-chain fatty acids (SCFAs), key bioactive microbial metabolites, are the missing link along the gut- brain axis and might be able to modulate recovery after experimental stroke. SCFA supplementation in the drinking water of male mice significantly improved recovery of affected limb motor function. Using in vivo wide-field calcium imaging, we observed that SCFAs induced altered contralesional cortex connectivity. This was associated with SCFA-dependent changes in spine and synapse densities. RNA sequencing of the forebrain cortex indicated a potential involvement of microglial cells in contributing to the structural and functional remodeling. Further analyses confirmed a substantial impact of SCFAs on microglial activation, which depended on the recruitment of T cells to the infarcted brain. Our findings identified that microbiota-derived SCFAs modulate poststroke recovery via effects on systemic and brain resident immune cells.Proteomic

    Evidence based medicine in neurological rehabilitation — a critical review

    No full text

    Rehabilitation von Erkrankungen des zentralen Nervensystems

    No full text
    corecore