25 research outputs found

    Formalism for obtaining nuclear momentum distributions by the Deep Inelastic Neutron Scattering technique

    Full text link
    We present a new formalism to obtain momentum distributions in condensed matter from Neutron Compton Profiles measured by the Deep Inelastic Neutron Scattering technique. The formalism describes exactly the Neutron Compton Profiles as an integral in the momentum variable yy. As a result we obtain a Volterra equation of the first kind that relates the experimentally measured magnitude with the momentum distributions of the nuclei in the sample. The integration kernel is related with the incident neutron spectrum, the total cross section of the filter analyzer and the detectors efficiency function. A comparison of the present formalism with the customarily employed approximation based on a convolution of the momentum distribution with a resolution function is presented. We describe the inaccuracies that the use of this approximation produces, and propose a new data treatment procedure based on the present formalism.Comment: 11 pages, 8 figure

    Repulsion of Single-well Fundamental Edge Magnetoplasmons in Double Quantum Wells

    Full text link
    A {\it microscopic} treatment of fundamental edge magnetoplasmons (EMPs) along the edge of a double quantum well (DQW) is presented for strong magnetic fields, low temperatures, and total filling factor \nu=2. It is valid for lateral confining potentials that Landau level (LL) flattening can be neglected. The cyclotron and Zeeman energies are assumed larger than the DQW energy splitting \sqrt{\Delta^2 +4T^2}, where \Delta is the splitting of the isolated wells and T the tunneling matrix element. %hen calculated unperturbed density profile is sharp at the edge. Using a random-phase approximation (RPA), which includes local and nonlocal contributions to the current density, it is shown that for negligible tunnel coupling 2T << \Delta the inter-well Coulomb coupling leads to two DQW fundamental EMPs which are strongly renormalized in comparison with the decoupled, single-well fundamental EMP. These DQW modes can be modified further upon varying the inter-well distance d, along the z axis, and/or the separation of the wells' edges \Delta y along the y axis. The charge profile of the {\it fast} and {\it slow} DQW mode varies, respectively, in an {\it acoustic} and {\it optical} manner along the y axis and is not smooth on the \ell_{0} scale. For strong tunneling \Delta\alt 2T these DQW modes are essentially modified when \Delta is changed by applying a transverse electric field to the DQW.Comment: Text 18 pages in Latex/Revtex/Preprint format, 2 Postscript figure

    Baumaterialien

    No full text

    Direct observation of tunneling in KDP using neutron Compton scattering

    No full text
    Neutron Compton Scattering measurements presented here of the momentum distribution of hydrogen in KH2PO4KH_2PO_4 (KDP) just above and well below the ferroelectric transition temperature show clearly that the proton is coherent over both sites in the in the high temperature phase, a result that invalidates the commonly accepted order-disorder picture of the transition. The Born-Oppenheimer potential for the hydrogen, extracted directly from data for the first time, is consistent with neutron diffraction data, and the vibrational spectrum is in substantial agreement with infrared absorption measurements. The measurements are sensitive enough to detect the effect of surrounding ligands on the hydrogen bond, and can be used to study the systematic effect of the variation of these ligands in other hydrogen bonded systems.Comment: 5 pages, 3 figure
    corecore