344 research outputs found

    Opposing shear senses in a subdetachment mylonite zone: Implications for core complex mechanics

    Get PDF
    [1] Global studies of metamorphic core complexes and low‐angle detachment faults have highlighted a fundamental problem: Since detachments excise crustal section, the relationship between the mylonitic rocks in their footwalls and the brittle deformation in their hanging walls is commonly unclear. Mylonites could either reflect ductile deformation related to exhumation along the detachment fault, or they could be a more general feature of the extending middle crust that has been “captured ” by the detachment. In the first case we would expect the kinematics of the mylonite zone to mirror the sense of movement on the detachment; in the second case both the direction and sense of shear in the mylonites could be different. The northern Snake Range dĂ©collement (NSRD) is a classic Basin and Range detachment fault with a well‐documented top‐east of displacement. We present structural, paleo-magnetic, geochronological, and geothermometric evidence to suggest that the mylonite zone below the NSRD locally experienced phases of both east ‐ and west‐directed shear, inconsistent with movement along a single detachment fault. We therefore propose that the footwall mylonites represent a predetachment dis-continuity in the middle crust that separated localized deformation above from distributed crustal flow below (localized‐distributed transition (LDT)). The mylonites were subsequently captured by a moderately dipping brittle detachment that soled down to the middle crust and exhumed them around a rolling hinge into a subhorizontal orientation at the surface, produc-ing the present‐day NSRD. In this interpretation the brittle hanging wall represents a series of rotated upper crustal normal faults, whereas the mylonitic footwall represents one or more exhumed middl

    Deuteron Momentum Distribution in KD2HPO4

    Full text link
    The momentum distribution in KD2PO4(DKDP) has been measured using neutron Compton scattering above and below the weakly first order paraelectric-ferroelectric phase transition(T=229K). There is very litte difference between the two distributions, and no sign of the coherence over two locations for the proton observed in the paraelectric phase, as in KH2PO4(KDP). We conclude that the tunnel splitting must be much less than 20mev. The width of the distribution indicates that the effective potential for DKDP is significantly softer than that for KDP. As electronic structure calculations indicate that the stiffness of the potential increases with the size of the coherent region locally undergoing soft mode fluctuations, we conclude that there is a mass dependent quantum coherence length in both systems.Comment: 6 pages 5 figure

    Magnetic Field Induced Insulating Phases at Large rsr_s

    Full text link
    Exploring a backgated low density two-dimensional hole sample in the large rsr_s regime we found a surprisingly rich phase diagram. At the highest densities, beside the Μ=1/3\nu=1/3, 2/3, and 2/5 fractional quantum Hall states, we observe both of the previously reported high field insulating and reentrant insulating phases. As the density is lowered, the reentrant insulating phase initially strengthens, then it unexpectedly starts weakening until it completely dissapears. At the lowest densities the terminal quantum Hall state moves from Μ=1/3\nu=1/3 to Μ=1\nu=1. The intricate behavior of the insulating phases can be explained by a non-monotonic melting line in the Μ\nu-rsr_s phase space

    Laughlin liquid - Wigner solid transition at high density in wide quantum wells

    Full text link
    Assuming that the phase transition between the Wigner solid and the Laughlin liquid is first-order, we compare ground-state energies to find features of the phase diagram at fixed Μ\nu. Rather than use the Coulomb interaction, we calculate the effective interaction in a square quantum well, and fit the results to a model interaction with length parameter λ\lambda roughly proportional to the width of the well. We find a transition to the Wigner solid phase at high density in very wide wells, driven by the softening of the interaction at short distances, as well as the more well-known transition to the Wigner solid at low density, driven by Landau-level mixing.Comment: RevTeX 3.0, 3 Postscript figures appended in uuencoded forma

    Freezing of the quantum Hall liquid at Μ=\nu = 1/7 and 1/9

    Full text link
    We compare the free energy computed from the ground state energy and low-lying excitations of the 2-D Wigner solid and the fractional quantum Hall liquid, at magnetic filling factors Μ=1/7\nu = 1/7 and 1/9. We find that the Wigner solid melts into the fractional quantum Hall liquid at roughly the same temperature as that of some recent luminescence experiments, while it remains a solid at the lower temperatures characteristic of the transport experiments. We propose this melting as a consistent interpretation of both sets of experiments.Comment: uses RevTeX 2.0 or 3.

    Response Function of the Fractional Quantized Hall State on a Sphere II: Exact Diagonalization

    Full text link
    We study the excitation spectra and the dynamical structure factor of quantum Hall states in a finite size system through exact diagonalization. Comparison is made between the numerical results so obtained and the analytic results obtained from a modified RPA in the preceding companion paper. We find good agreement between the results at low energies.Comment: 22 pages (REVTeX 3.0). 10 figures available on request. Complete postscript file (including figures) for this paper are available on the World Wide Web at http://cmtw.harvard.edu/~simon/ ; Preprint number HU-CMT-94S0

    A low power photoemission source for electrons on liquid helium

    Full text link
    Electrons on the surface of liquid helium are a widely studied system that may also provide a promising method to implement a quantum computer. One experimental challenge in these studies is to generate electrons on the helium surface in a reliable manner without heating the cryo-system. An electron source relying on photoemission from a zinc film has been previously described using a high power continuous light source that heated the low temperature system. This work has been reproduced more compactly by using a low power pulsed lamp that avoids any heating. About 5e3 electrons are collected on 1 cm^2 of helium surface for every pulse of light. A time-resolved experiment suggests that electrons are either emitted over or tunnel through the 1eV barrier formed by the thin superfluid helium film on the zinc surface. No evidence of trapping or bubble formation is seen.Comment: 9 pages, 3 figures, submitted to J. Low Temp. Phy
    • 

    corecore