2 research outputs found

    Mitocurcumin utilizes oxidative stress to upregulate JNK/p38 signaling and overcomes Cytarabine resistance in acute myeloid leukemia

    No full text
    Acute myeloid leukemia (AML) is a type of blood cancer that is characterized by the rapid growth of abnormal myeloid cells. The goal of AML treatment is to eliminate the leukemic blasts, which is accomplished through intensive chemotherapy. Cytarabine is a key component of the standard induction chemotherapy regimen for AML. However, despite a high remission rate, 70-80% of AML patients relapse and develop resistance to Cytarabine, leading to poor clinical outcomes. Mitocurcumin (MitoC), a derivative of curcumin that enters mitochondria, leading to a drop in mitochondrial membrane potential and mitophagy induction. Further, it activates oxidative stress-mediated JNK/p38 signaling to induce apoptosis. MitoC demonstrated a preferential ability to kill leukemic cells from AML cell lines and patient-derived leukemic blasts. RNA sequencing data suggests perturbation of DNA damage response and cell proliferation pathways in MitoC-treated AML. Elevated reactive oxygen species (ROS) in MitoC-treated AML cells resulted in significant DNA damage and cell cycle arrest. Further, MitoC treatment resulted in ROS-mediated enhanced levels of p21, which leads to suppression of CHK1, RAD51, Cyclin-D and c-Myc oncoproteins, potentially contributing to Cytarabine resistance. Combinatorial treatment of MitoC and Cytarabine has shown synergism, increased apoptosis, and enhanced DNA damage. Using AML xenografts, a significant reduction of hCD45+ cells was observed in AML mice bone marrow treated with MitoC (mean 0.6%; range0.04%-3.56%) compared to control (mean 38.2%; range10.1%-78%), p = 0.03. The data suggest that MitoC exploits stress-induced leukemic oxidative environment to up-regulate JNK/p38 signaling to lead to apoptosis and can potentially overcome Cytarabine resistance via ROS/p21/CHK1 axis.</p

    Novel covalent CDK7 inhibitor potently induces apoptosis in acute myeloid leukemia and synergizes with Venetoclax

    No full text
    Introduction: The emergence of resistance to the highly successful BCL2-directed therapy is a major unmet need in acute myeloid leukemia (AML), an aggressive malignancy with poor survival rates. Towards identifying therapeutic options for AML patients who progress on BCL2-directed therapy, we studied a clinical-stage CDK7 inhibitor XL102, which is being evaluated in solid tumors (NCT04726332). Materials and methods: To determine the anti-proliferative effects of XL102, we performed experiments including time-resolved fluorescence resonance energy transfer, target occupancy, cell cycle and apoptosis-based assays. We also included genetically characterized primary myeloid blasts from de novo and relapsed/refractory AML patients. For mechanistic studies, CRISPR/Cas9 mediated knockout of CDK7 and c-Myc and immunoblotting were performed. NOD/SCID orthotropic and subcutaneous AML xenografts were used to determine anti-leukemic effects. To assess the synergistic effects of XL102 with Venetoclax, we performed RNA sequencing and gene set enrichment analysis using Venetoclax sensitive and resistant model systems. Results: XL102, a highly specific, orally bioavailable covalent inhibitor of CDK7. Inhibitory effect on CDK7 by XL102 in primary myeloid blasts (n = 54) was in nanomolar range (mean = 300 nM; range = 4.0-952 nM). XL102 treated AML cells showed a reduction in phosphorylation levels of Serine 2/5/7 at carboxy-terminal domain of RNA polymerase II. T-loop phosphorylation of CDK1(Thr161) and CDK2(Thr160) was inhibited by XL102 in dose-dependent manner leading to cell-cycle arrest. c-Myc downregulation and enhanced levels of p53 and p21 in XL102 treated cells were observed. Increased levels of p21 and activation of p53 by XL102 were mimicked by genetic ablation of CDK7, which supports that the observed effects of XL102 are due to CDK7 inhibition. XL102 treated AML xenografts showed remarkable reduction in hCD45 + marrow cells (mean = 0.60%; range = 0.04%-3.53%) compared to vehicle control (mean = 38.2%; range = 10.1%-78%), with corresponding increase in p53, p21 and decrease in c-Myc levels. The data suggests XL102 induces apoptosis in AML cells via CDK7/c-Myc/p53 axis. RNA-sequencing from paired Venetoclax-sensitive and Venetoclax-resistant cells treated with XL102 showed downregulation of genes involved in proliferation and apoptosis. Conclusion: Taken together, XL102 with Venetoclax led to synergistic effects in overcoming resistance and provided a strong rationale for clinical evaluation of XL102 as a single agent and in combination with Venetoclax
    corecore