768 research outputs found

    Comparison between wind waves at sea and in the laboratory

    Get PDF
    Correlations between laboratory and geophysical data are presented for certain statistical properties of wind waves. The parameters chosen include: (i) relationships between wave height and the height of the highest one-third or one-tenth waves, as given by a Rayleigh probability distribution, and (ii) amplitude spectra for waves, as given by Phillips\u27 equilibrium theory. The correlation between laboratory results and geophysical data is satisfactory over a wide range of wave size

    Fermi Surface and Quasiparticle Excitations of overdoped Tl2Ba2CuO6+d by ARPES

    Full text link
    The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface consists of a single large hole pocket centered at (pi,pi) and is approaching a topological transition. Although a superconducting gap with d_x^2-y^2 symmetry is tentatively identified, the quasiparticle evolution with momentum and binding energy exhibits a marked departure from the behavior observed in under and optimally doped cuprates. The relevance of these findings to scattering, many-body, and quantum-critical phenomena is discussed.Comment: Revised manuscript, in press on PRL. A high-resolution version can be found at http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/Tl2201_LE.pdf and related material at http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm

    Cartoon Computation: Quantum-like computing without quantum mechanics

    Get PDF
    We present a computational framework based on geometric structures. No quantum mechanics is involved, and yet the algorithms perform tasks analogous to quantum computation. Tensor products and entangled states are not needed -- they are replaced by sets of basic shapes. To test the formalism we solve in geometric terms the Deutsch-Jozsa problem, historically the first example that demonstrated the potential power of quantum computation. Each step of the algorithm has a clear geometric interpetation and allows for a cartoon representation.Comment: version accepted in J. Phys.A (Letter to the Editor

    Unfolded Protein Response Activation Reduces Secretion and Extracellular Aggregation of Amyloidogenic Immunoglobulin Light Chain

    Get PDF
    Light-chain amyloidosis (AL) is a degenerative disease characterized by the extracellular aggregation of a destabilized amyloidogenic Ig light chain (LC) secreted from a clonally expanded plasma cell. Current treatments for AL revolve around ablating the cancer plasma cell population using chemotherapy regimens. Unfortunately, this approach is limited to the ∼70% of patients who do not exhibit significant organ proteotoxicity and can tolerate chemotherapy. Thus, identifying new therapeutic strategies to alleviate LC organ proteotoxicity should allow AL patients with significant cardiac and/or renal involvement to subsequently tolerate established chemotherapy treatments. Using a small-molecule screening approach, the unfolded protein response (UPR) was identified as a cellular signaling pathway whose activation selectively attenuates secretion of amyloidogenic LC, while not affecting secretion of a nonamyloidogenic LC. Activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the absence of stress recapitulates the selective decrease in amyloidogenic LC secretion by remodeling the endoplasmic reticulum proteostasis network. Stress-independent activation of XBP1s, or especially ATF6, also attenuates extracellular aggregation of amyloidogenic LC into soluble aggregates. Collectively, our results show that stress-independent activation of these adaptive UPR transcription factors offers a therapeutic strategy to reduce proteotoxicity associated with LC aggregation

    Quantum Aspects of Semantic Analysis and Symbolic Artificial Intelligence

    Full text link
    Modern approaches to semanic analysis if reformulated as Hilbert-space problems reveal formal structures known from quantum mechanics. Similar situation is found in distributed representations of cognitive structures developed for the purposes of neural networks. We take a closer look at similarites and differences between the above two fields and quantum information theory.Comment: version accepted in J. Phys. A (Letter to the Editor

    Abused Children Experience High Anger Exposure

    Get PDF
    Childhood maltreatment is a critical problem in the United States. Much attention has been paid to the negative outcomes suffered by victims of abuse. Less attention has been devoted to understanding the emotional environments of maltreated children. One assumption, which has stood without empirical test, is that abused children encounter a high degree of anger in their home environments. Anger exposure is thought to be a source of stress for children in abusive environments and a potential link between the experience of abuse and the development of health and behavioral problems. We tested this notion by assessing data on over 1,000 parents and guardians of 3- to 17-year-old children who were participants in child development studies. Abuse was measured via records from Child Protective Services regarding substantiated and unsubstantiated claims of abuse as well as parent/guardian report. We compared self-reported experiences of anger from parents/guardians of children who have experienced abuse with those who have not. We found support for the claim that caregivers of abused children experience and express high levels of anger. Better characterization of the emotional environments in which abused children develop is critical for understanding how and why abuse affects children and has important implications for informing interventions

    Contemporary and future distributions of cobia, Rachycentron canadum

    Get PDF
    Climate change has influenced the distribution and phenology of marine species, globally. However, knowledge of the impacts of climate change is lacking for many species that support valuable recreational fisheries. Cobia (Rachycentron canadum) are the target of an important recreational fishery along the U.S. east coast that is currently the subject of a management controversy regarding allocation and stock structure. Further, the current and probable future distributions of this migratory species are unclear, further complicating decision-making. The objectives of this study are to better define the contemporary distribution of cobia along the U.S. east coast and to project potential shifts in distribution and phenology under future climate change scenarios

    Geometric representations for minimalist grammars

    Full text link
    We reformulate minimalist grammars as partial functions on term algebras for strings and trees. Using filler/role bindings and tensor product representations, we construct homomorphisms for these data structures into geometric vector spaces. We prove that the structure-building functions as well as simple processors for minimalist languages can be realized by piecewise linear operators in representation space. We also propose harmony, i.e. the distance of an intermediate processing step from the final well-formed state in representation space, as a measure of processing complexity. Finally, we illustrate our findings by means of two particular arithmetic and fractal representations.Comment: 43 pages, 4 figure

    Pharmacologic IRE1/XBP1s Activation Confers Targeted ER Proteostasis Reprogramming

    Get PDF
    Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) is a promising strategy to correct defects in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. However, no pharmacologic activators of this pathway identified to date are suitable for ER proteostasis remodeling through selective activation of IRE1/XBP1s signaling. Here, we use high-throughput screening to identify non-toxic compounds that induce ER proteostasis remodeling through IRE1/XBP1s activation. We employ transcriptional profiling to stringently confirm that our prioritized compounds selectively activate IRE1/XBP1s signaling without activating other cellular stress-responsive signaling pathways. Furthermore, we demonstrate that our compounds improve ER proteostasis of destabilized variants of amyloid precursor protein (APP) through an IRE1-dependent mechanism and reduce APP-associated mitochondrial toxicity in cellular models. These results establish highly selective IRE1/XBP1s activating compounds that can be widely employed to define the functional importance of IRE1/XBP1s activity for ER proteostasis regulation in the context of health and disease. [Figure not available: see fulltext.]
    corecore