1,183 research outputs found

    Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited

    Get PDF
    The cellular and molecular mechanisms of tumor angiogenesis and its prospects for anti-angiogenic cancer therapy are major issues in almost all current concepts of both cancer biology and targeted cancer therapy. Currently, (1) sprouting angiogenesis, (2) vascular co-option, (3) vascular intussusception, (4) vasculogenic mimicry, (5) bone marrow-derived vasculogenesis, (6) cancer stem-like cell-derived vasculogenesis and (7) myeloid cell-driven angiogenesis are all considered to contribute to tumor angiogenesis. Many of these processes have been described in developmental angiogenesis; however, the relative contribution and relevance of these in human brain cancer remain unclear. Preclinical tumor models support a role for sprouting angiogenesis, vascular co-option and myeloid cell-derived angiogenesis in glioma vascularization, whereas a role for the other four mechanisms remains controversial and rather enigmatic. The anti-angiogenesis drug Avastin (Bevacizumab), which targets VEGF, has become one of the most popular cancer drugs in the world. Anti-angiogenic therapy may lead to vascular normalization and as such facilitate conventional cytotoxic chemotherapy. However, preclinical and clinical studies suggest that anti-VEGF therapy using bevacizumab may also lead to a pro-migratory phenotype in therapy resistant glioblastomas and thus actively promote tumor invasion and recurrent tumor growth. This review focusses on (1) mechanisms of tumor angiogenesis in human malignant glioma that are of particular relevance for targeted therapy and (2) controversial issues in tumor angiogenesis such as cancer stem-like cell-derived vasculogenesis and bone-marrow-derived vasculogenesis

    Brain homeostasis : VEGF receptor 1 and 2 ; two unequal brothers in mind

    Get PDF
    Vascular endothelial growth factors (VEGFs), initially thought to act specifically on the vascular system, exert trophic effects on neural cells during development and adulthood. Therefore, the VEGF system serves as a promising therapeutic target for brain pathologies, but its simultaneous action on vascular cells paves the way for harmful side effects. To circumvent these deleterious effects, many studies have aimed to clarify whether VEGFs directly affect neural cells or if the effects are mediated secondarily via other cell types, like vascular cells. A great number of reports have shown the expression and function of VEGF receptors (VEGFRs), mainly VEGFR-1 and -2, in neural cells, where VEGFR-2 has been described as the major mediator of VEGF-A signals. This review aims to summarize and compare the divergent roles of VEGFR-1 and -2 during CNS development and homeostasis

    Differentiation of the brain vasculature: the answer came blowing by the Wnt

    Get PDF
    Vascularization of the vertebrate brain takes place during embryonic development from a preformed perineural vascular plexus. As a consequence of the intimate contact with neuroectodermal cells the vessels, which are entering the brain exclusively via sprouting angiogenesis, acquire and maintain unique barrier properties known as the blood-brain barrier (BBB). The endothelial BBB depends upon the close association of endothelial cells with pericytes, astrocytes, neurons and microglia, which are summarized in the term neuro-vascular unit. Although it is known since decades that the CNS tissue provides the cues for BBB induction and differentiation in endothelial cells, the molecular mechanism remained obscure

    Analysis of Early Hard Tissue Formation in Dentine by Energy Dispersive X-Ray Microanalysis and Energy-Filtering Transmission Electron Microscopy

    Get PDF
    Thin cryosections and sections of embedded tissue were prepared from dentine of cryofixed rat incisors. Energy dispersive X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS) have been applied to study the calcium and phosphorus distribution in predentine of these incisors. A small enrichment of calcium and phosphorus was found in the predentine zone near the dentine border. Element distributions were correlated with analyses of the early crystal formation in dentine. These investigations were carried out by parallel applications of electron spectroscopic diffraction (ESD) and electron spectroscopic imaging (ESI) using zero-loss filtering. It was found that the earliest crystal formations already showed the lattice of the hexagonal mineral apatite. They form parallelly arranged chains of dots which coalesce rapidly to form needle-like crystallites along the collagen microfibrils

    Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus

    Get PDF
    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C

    Cooling Scheme for BNL-Built LHC Magnets

    Get PDF
    Brookhaven National Laboratory (BNL) will provide four types of magnets, identified as D1, D2, D3 and D4, for the Insertion Regions of the Large Hadron Collider (LHC) as part of an international collaboration. These magnets utilize the dipole coil design of the Relativistic Heavy Ion Collider (RHIC) at BNL, for performance, reliability and cost reasons. The magnet cold mass and cryostat have been designed to ensure that these magnets meet all performance requirements in the LHC sloped tunnel using its cryogenic distribution system. D1 is a RHIC arc dipole magnet. D2 and D4 are 2-in-1 magnets, two coils in one cold mass, in a cryostat. D3 is a 1-in-1 magnet, one coil in one cold mass, with two cold masses side by side in a cryostat. D1 and D4 will be cooled by helium II at 1.9 K using a bayonet heat exchanger similar to the main cooling system of LHC. D2 and D3 will be cooled by liquid helium at 4.5 K using a Two-Feed scheme. A detailed description of the cooling scheme for these magnets, their cryostats, special features and interfaces with the LHC distribution system is given

    SHORT COMMUNICATION: Complementary tumor induction in neural grafts exposed to N-ethyl-N-nitrosourea and an activated myc gene

    Get PDF
    Using a combination of transplacental carcinogen exposure and retrovirus-mediated oncogene transfer into fetal brain transplants, we have studied complementary transformation by N-ethyl-N-nitrosourea (NEU) and the v-myc oncogene in the nervous system. Previous experiments had demonstrated that both agents will not induce tumors independently whereas simultaneous expression of v-H-ras and v-gag/myc exerted a powerful transforming potential in neural grafts. In order to identify other genetic alterations that co-operate with an activated myc gene, the neurotropic carcinogen NEU was used to generate mutations of cellular genes. On embryonic day 14 (ED14), pregnant donor animals (F344 rats) received a single i.v. dose of NEU (50 mg/kg). Twenty-four hours later (ED15), the fetal brains were removed, triturated and incubated with a retroviral vector carrying the v-gag/myc oncogene. Subsequently, these primary cell suspensions were transplanted stereotactically into the caudate-putamen of syngenic adult recipients. After latency periods of 3-6 months, 5 of 10 recipients harboring ED15 fetal brain transplants developed malignant, poorly differentiated neuroectodermal tumors in the grafts. No tumor development was observed in seven recipients harboring ED16 neural grafts. Cell lines were established from three tumors and the 110 kd gag/myc fusion protein encoded by the retroviral construct was identified in the tumors by Western blotting. Several candidate genes for mutational activation by NEU including the H-ras, K-ras and neu oncogenes were analyzed for specific point mutations by polymerase chain reaction (PCR) and direct DNA sequencing of the PCR products. However, no mutations were found in any of these genes. These findings lend further support to the multistep hypothesis of neoplastic transformation in the brain. The tumors induced in this model provide an interesting tool for the identification of genes that co-operate with an activated myc gene in neurocarcinogenesi

    Wnt/beta-catenin signaling controls development of the blood–brain barrier

    Get PDF
    The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/beta-catenin (beta-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of beta-cat in vivo enhances barrier maturation, whereas inactivation of beta-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of beta-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of beta-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of beta-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown
    • …
    corecore