1,081 research outputs found

    Wind action on water standing in a laboratory channel

    Get PDF
    CEP6566-GMHEJP14a, CER65GMH-EJP40a.NCAR preprint-memo, PM # 135.Includes bibliographical references.The processes of wave and current development resulting from wind action on initially standing water have been investigated in a wind-water tunnel. The mean air flow over wavy water was examined along with the variation of several properties of the water motion with fetch, water depth, and wind speed. Measurements of phase speed and length of significant waves, the standard deviation of the water sur face, the average surface drift, the autocorrelation of surface displacement and the frequency spectra of the wind waves are reported. The experimental results indicate that (a) the air motion in the channel follows a three dimensional pattern characteristic of wind tunnels of rectangular cross-section; (b) the wind waves generated in the channel travel downstream at approximately the same phase speed as gravity waves of small amplitude, provided the effect of the drift current is taken into account; (c) the average drag coefficients for the action of the wind on the water surface increase with increasing wind speed, and these data are essentially the same as the results of previous investigators; (d) the autocorrelations of surface displacement and frequency spectra are consistent with the visual observations that the wind waves in the channel consist of nearly regular primary waves on which are superimposed smaller ripples; (e) energy in the high frequency range in the spectra tends to approach an equilibrium distribution rather quickly while the lower frequency components initially grow exponentially with increasing fetch but, later, tend to reach a state of equilibrium; and (f) a similarity shape for the frequency spectra developed

    Comparison between wind waves at sea and in the laboratory

    Get PDF
    Correlations between laboratory and geophysical data are presented for certain statistical properties of wind waves. The parameters chosen include: (i) relationships between wave height and the height of the highest one-third or one-tenth waves, as given by a Rayleigh probability distribution, and (ii) amplitude spectra for waves, as given by Phillips\u27 equilibrium theory. The correlation between laboratory results and geophysical data is satisfactory over a wide range of wave size

    Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    Get PDF
    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact angles of 15¿58° versus 96° for unmodified PTFE. Electron spectroscopy in chemical analysis (ESCA) measurements revealed incorporation of both nitrogenand oxygen-containing groups into the PTFE surfaces, dependent on the plasma composition and exposure time. In-vitro biological evaluation of unmodified and modified PTFE surfaces showed that human endothelial cells, seeded from 20% human serum-containing culture medium, adhered well on to modified PTFE surfaces, but not on to unmodified films. Adhesion of endothelial cells on to expanded PTFE graft material (Gore-Tex) was also stimulated by plasma treatment of this substrate. On plasma-treated expanded PTFE, the adhering endothelial cells formed a monolayer, which covered the textured surface. The latter observation is important in view of the hemocompatibility of vascular grafts seeded with endothelial cells before implantation

    Unfolded Protein Response Activation Reduces Secretion and Extracellular Aggregation of Amyloidogenic Immunoglobulin Light Chain

    Get PDF
    Light-chain amyloidosis (AL) is a degenerative disease characterized by the extracellular aggregation of a destabilized amyloidogenic Ig light chain (LC) secreted from a clonally expanded plasma cell. Current treatments for AL revolve around ablating the cancer plasma cell population using chemotherapy regimens. Unfortunately, this approach is limited to the ∌70% of patients who do not exhibit significant organ proteotoxicity and can tolerate chemotherapy. Thus, identifying new therapeutic strategies to alleviate LC organ proteotoxicity should allow AL patients with significant cardiac and/or renal involvement to subsequently tolerate established chemotherapy treatments. Using a small-molecule screening approach, the unfolded protein response (UPR) was identified as a cellular signaling pathway whose activation selectively attenuates secretion of amyloidogenic LC, while not affecting secretion of a nonamyloidogenic LC. Activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the absence of stress recapitulates the selective decrease in amyloidogenic LC secretion by remodeling the endoplasmic reticulum proteostasis network. Stress-independent activation of XBP1s, or especially ATF6, also attenuates extracellular aggregation of amyloidogenic LC into soluble aggregates. Collectively, our results show that stress-independent activation of these adaptive UPR transcription factors offers a therapeutic strategy to reduce proteotoxicity associated with LC aggregation

    Cartoon Computation: Quantum-like computing without quantum mechanics

    Get PDF
    We present a computational framework based on geometric structures. No quantum mechanics is involved, and yet the algorithms perform tasks analogous to quantum computation. Tensor products and entangled states are not needed -- they are replaced by sets of basic shapes. To test the formalism we solve in geometric terms the Deutsch-Jozsa problem, historically the first example that demonstrated the potential power of quantum computation. Each step of the algorithm has a clear geometric interpetation and allows for a cartoon representation.Comment: version accepted in J. Phys.A (Letter to the Editor

    Predictors for failure of supraglottic superimposed high-frequency jet ventilation during endoscopic upper airway surgery in pediatric patients

    Get PDF
    Airway surgery in pediatric patients is challenging with regard to balancing surgical exposure with ventilation requirements, as during the procedure the airway must be shared between laryngologist and anesthetist. For endoscopic laryngeal surgery, different methods of ventilation are used, among others jet ventilation via a specifically adapted suspension laryngoscope using a dual jet stream(Supraglottic Superimposed High Frequency Jet ventilation, SSHFJV) (1).High BMI and a history of pulmonary pathology proved to be factors contributing to failing of SSHFJV in adult patients (2). However, factors influencing the failure of SSHFJV in pediatric patients have never been described yet

    Universal neural field computation

    Full text link
    Turing machines and G\"odel numbers are important pillars of the theory of computation. Thus, any computational architecture needs to show how it could relate to Turing machines and how stable implementations of Turing computation are possible. In this chapter, we implement universal Turing computation in a neural field environment. To this end, we employ the canonical symbologram representation of a Turing machine obtained from a G\"odel encoding of its symbolic repertoire and generalized shifts. The resulting nonlinear dynamical automaton (NDA) is a piecewise affine-linear map acting on the unit square that is partitioned into rectangular domains. Instead of looking at point dynamics in phase space, we then consider functional dynamics of probability distributions functions (p.d.f.s) over phase space. This is generally described by a Frobenius-Perron integral transformation that can be regarded as a neural field equation over the unit square as feature space of a dynamic field theory (DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with rectangular support are mapped onto uniform p.d.f.s with rectangular support, again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with arXiv:1204.546

    Functional morphology of the blood-brain barrier in health and disease

    Get PDF
    The adult quiescent blood-brain barrier (BBB), a structure organised by endothelial cells through interactions with pericytes, astrocytes, neurons and microglia in the neurovascular unit, is highly regulated but fragile at the same time. In the past decade, there has been considerable progress in understanding not only the molecular pathways involved in BBB development, but also BBB breakdown in neurological diseases. Specifically, the Wnt/\u3b2-catenin, retinoic acid and sonic hedgehog pathways moved into the focus of BBB research. Moreover, angiopoietin/Tie2 signalling that is linked to angiogenic processes has gained attention in the BBB field. Blood vessels play an essential role in initiation and progression of many diseases, including inflammation outside the central nervous system (CNS). Therefore, the potential influence of CNS blood vessels in neurological diseases associated with BBB alterations or neuroinflammation has become a major focus of current research to understand their contribution to pathogenesis. Moreover, the BBB remains a major obstacle to pharmaceutical intervention in the CNS. The complications may either be expressed by inadequate therapeutic delivery like in brain tumours, or by poor delivery of the drug across the BBB and ineffective bioavailability. In this review, we initially describe the cellular and molecular components that contribute to the steady state of the healthy BBB. We then discuss BBB alterations in ischaemic stroke, primary and metastatic brain tumour, chronic inflammation and Alzheimer's disease. Throughout the review, we highlight common mechanisms of BBB abnormalities among these diseases, in particular the contribution of neuroinflammation to BBB dysfunction and disease progression, and emphasise unique aspects of BBB alteration in certain diseases such as brain tumours. Moreover, this review highlights novel strategies to monitor BBB function by non-invasive imaging techniques focussing on ischaemic stroke, as well as novel ways to modulate BBB permeability and function to promote treatment of brain tumours, inflammation and Alzheimer's disease. In conclusion, a deep understanding of signals that maintain the healthy BBB and promote fluctuations in BBB permeability in disease states will be key to elucidate disease mechanisms and to identify potential targets for diagnostics and therapeutic modulation of the BBB
    • 

    corecore