9 research outputs found

    Dynamic light scattering and diffusing wave spectroscopy studies of the microscopic dynamics of polystyrene latex spheres suspened in glycerol

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 1999.Includes bibliographical references (leaf 50).The dynamics of polystyrene latex spheres [650 A radius] suspended in glycerol have been studied using the techniques of dynamic light scattering in the single scattering limit and diffusing wave spectroscopy in the multiple scattering regime using a charge coupled device [CCD] camera as our detector. Our experiments, which investigated suspensions of various concentrations [0.001</=0</=0.075], extended over length scales ranging from q = 0.00015 A to q = 0.00071 A and spanned three orders of magnitude in the time domain [0.1 s to 100 s]. Our measurements of the temporal fluctuations of the scattered intensity indicate that the dynamic behavior of our samples can be well characterized with intensity autocorrelation functions both in the single scattering limit and the multiple scattering regime.by Bradley R. Plaster.S.B

    The neutron electric form factor to Q² = 1.45 (GeV/c)²

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, February 2004.Includes bibliographical references (p. 513-541).The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity.(cont.) Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.by Bradley Robert Plaster.Ph.D

    Search for the Neutron Decay n→\rightarrow X+γ\gamma where X is a dark matter particle

    Get PDF
    In a recent paper submitted to Physical Review Letters, Fornal and Grinstein have suggested that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods can be explained by a previously unobserved dark matter decay mode, n→\rightarrow X+γ\gamma where X is a dark matter particle. We have performed a search for this decay mode over the allowed range of energies of the monoenergetic gamma ray for X to be a dark matter particle. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with greater than 4 sigma confidence.Comment: 6 pages 3 figure

    First Direct Constraints on Fierz Interference in Free-Neutron \u3cem\u3eβ\u3c/em\u3e Decay

    Get PDF
    Precision measurements of free-neutron β decay have been used to precisely constrain our understanding of the weak interaction. However, the neutron Fierz interference term bn, which is particularly sensitive to beyond-standard-model tensor currents at the TeV scale, has thus far eluded measurement. Here we report the first direct constraints on this term, finding bn = 0.067 ± 0.005stat+0.090-0.061sys, consistent with the standard model. The uncertainty is dominated by absolute energy reconstruction and the linearity of the β spectrometer energy response

    Search for the Neutron Decay \u3cem\u3en\u3c/em\u3e → \u3cem\u3eX\u3c/em\u3e+\u3cem\u3eγ\u3c/em\u3e, Where \u3cem\u3eX\u3c/em\u3e is a Dark Matter Particle

    Get PDF
    Fornal and Grinstein recently proposed that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods, can be explained by a previously unobserved dark matter decay mode, n → X+γ. We perform a search for this decay mode over the allowed range of energies of the monoenergetic γ ray for X to be dark matter. A Compton-suppressed high-purity germanium detector is used to identify γ rays from neutron decay in a nickel-phosphorous-coated stainless-steel bottle. A combination of Monte Carlo and radioactive source calibrations is used to determine the absolute efficiency for detecting γ rays arising from the dark matter decay mode. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with 97% confidence

    Search for Dark Matter Decay of the Free Neutron from the UCNA Experiment: \u3cem\u3en\u3c/em\u3e → χ + \u3cem\u3ee\u3c/em\u3e\u3csup\u3e+\u3c/sup\u3e\u3cem\u3ee\u3c/em\u3e\u3csup\u3e−\u3c/sup\u3e

    Get PDF
    It has been proposed recently that a previously unobserved neutron decay branch to a dark matter particle (χ) could account for the discrepancy in the neutron lifetime observed in experiments that use two different measurement techniques. One of the possible final states discussed includes a single χ along with an e+e− pair. We use data from the UCNA (Ultracold Neutron Asymmetry) experiment to set limits on this decay channel. Coincident electron-like events are detected with ∼4π acceptance using a pair of detectors that observe a volume of stored ultracold neutrons. The summed kinetic energy (Ee+e−) from such events is used to set limits, as a function of the χ mass, on the branching fraction for this decay channel. For χ masses consistent with resolving the neutron lifetime discrepancy, we exclude this as the dominant dark matter decay channel at ≫ 5σ level for 100 \u3c Ee+e− \u3c 644keV. If the χ + e+e− final state is not the only one, we set limits on its branching fraction of \u3c 10−4 for the above Ee+e− range at \u3e 90% confidence level

    New Result for the Neutron \u3cem\u3eβ\u3c/em\u3e-Asymmetry Parameter \u3cem\u3eA\u3c/em\u3e\u3csub\u3e0\u3c/sub\u3e from UCNA

    Get PDF
    Background: The neutron β-decay asymmetry parameter A0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ ≡ gA/gV, which under assumption of the conserved vector current hypothesis (gV = 1) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A0. Results: The UCNA experiment reports a new 0.67% precision result for A0 of A0 = −0.12054(44)stat(68)syst, which yields λ = gA/gV = −1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)syst and λ = gA/gV = −1.2772(20). Conclusions: This new result for A0 and gA/gV from the UCNA experiment has provided confirmation of the shift in values for gA/gV that has emerged in the published results from more recent experiments, which are in striking disagreement with the results from older experiments. Individual systematic corrections to the asymmetries in older experiments (published prior to 2002) were \u3e 10%, whereas those in the more recent ones (published after 2002) have been of the scale of \u3c 2%. The impact of these older results on the global average will be minimized should future measurements of A0 reach the 0.1% level of precision with central values near the most recent results

    Electric dipole moments and the search for new physics

    Get PDF
    Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and endorsement
    corecore