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Abstract
The dynamics of polystyrene latex spheres [650 A radius] suspended in glycerol have
been studied using the techniques of dynamic light scattering in the single scatter-
ing limit and diffusing wave spectroscopy in the multiple scattering regime using a
charge coupled device [CCD] camera as our detector. Our experiments, which inves-
tigated suspensions of various concentrations [0.001<0<0.075], extended over length
scales ranging from q = 0.00015 A-' to q = 0.00071 A-' and spanned three orders
of magnitude in the time domain [0.1 s to 100 s]. Our measurements of the tempo-
ral fluctuations of the scattered intensity indicate that the dynamic behavior of our
samples can be well characterized with intensity autocorrelation functions both in the
single scattering limit and the multiple scattering regime.
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Chapter 1

Introduction

Since the beginning of this century it has been known that light incident on condensed

matter having local inhomogencities in its density will scatter at angles other than

the angle of incidenIce [1]. W\ith the dlevelopIment of the laser as a source of coherent

illumination at constant wavelength three decades ago, it was subsequently realized

that the (dynamical processes of scatterers could be monitored via measurements of

the temporal intensity fluctuations of the scattered light. This general experimental

technique, now known as dynamic light scattering (DLS), has become one of the most

widely ulsed techniques when studies of inhomogeneities on length scales of the order

of the wavelength of light in physical systems are desired. The applications of DLS

to various physical systems have been widespread: colloidal suspensions, gels, and

polnymer blends are just a few of the different physical systemns that have been studied

with DLS [2].

Ini particular, the techniques of DLS have proven to be extremely useful in investi-

gations of colloidal suspensions of microscopic particles uindergoing diffusive Brownian

motion. The measurement of the teml)oral intensity fluctuations of the diffraction

)patterns of the light scattered by these p)articles (these (diffrac(tion )atterns are known

as speckle) reflects the dvInamics of the scatterers. The motion of the scatterers. as-

surnmed to be random as a result of Brownian motion, subsequently restults in random

temiporal fluctuations of the speckle intensity. These fluctuations can be character-

ize(l an ntensity autocorrelation function which quantifies the (legree to which the

8



intensity fluctuations renain correlatedl over time. Because the intensity fluctuations

are random. the fluctuations becomle menoryless over time, and hence the intensity

autocorrelation finction will decay over time [3].

Despite the fact DLS has found widespread application to the study of many

different physical sstems, DLS is restricted to those systelms in which light is scat-

tered at most once as a second scattering event would render measurements of the

intensity autocorrelation function meaningless. Thus, prior to the development of

the technique known as difflsing-wave spectroscopy (DWNS) in 1988 [4]. systems ucn

as highly concentrated opaque colloidal suspensions which exhibit multiple scattering

could not be easily studied as interpretation of the data was extremely difficult. How-

ever, under the assumption that the number of scattering events is sufficiently large

such that the propagation of a photon through the scattering media becomes com-

pletely randomized, the transport of the light can be approximated as diffusive [4].

These assumptions lead to intensity autocorrelation functions which provide mean-

ingful interpretation of temporal intensity fluctuation measurements.

This paper reports the results of both DLS and DWVS exp)eriments on samples of

polystryrene latex spheres suspended in glycerol in the dilute concentration limit (the

single scattering limit) and also at higher concentrations (multiple scattering) using a

charge coupled device (CCD) camera as the detector. In what follows we will discuss

the measurement of the intensity autocorrelation functions for these samples and the

information about the dvlnamics of the scatterers that can be extracted from these

measurements.

Chapter 2 will provide an introduction to the theory of both DLS and DWS for

the specific case of a colloidal suspension in which it is assumed the particles follow a

dynamical Brownian motion process. We will provide an outline of the derivations for

the intensity autoc(orrelation finctions for oth DLS and DW\'S and an interpretation

of these results.

Chapter 3 will contain a discussion of the ex)perimental apparatus we used for our

DLS and DWS experiments. WVe will discuss in detail the samples we investigated,

the differences between the experimental set-uips we used to measure the intensity
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autocorrelation fiunctions for the DLS experiments and the DNWS experiments. the

CCD detector we se(l to measure the temporal intensity fluctuations, and the ex-

p)erimllental mIethod we followed in order to acquire (lata oni these telmporal intensity

fluctuations.

In Chapter 4 we will continue with a description of the dlata analysis routine.

This chapter will mainly consist of a discussion of the idea underlying the coIImputer

algorithm used to redllce the raw data to intensity autocorrelation fiunctions.

Last, Chapter 5 will conclude with a presentation and d;scussion of our data on

the (d-namics of our samples. We will show how in the dilute concentration limit the

intensity autocorrelation functions are dependent on the angle between the incident

light and the detected light. For our higher concentration samples we will show

how the intensity autocorrelation functions are independent of the angle betweein

the incident light and the detected light and also how the intensity autocorrelation

finctions change with both variations in temperature and concentration.
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Chapter 2

Theory

In this chapter we will provide an introduction to the theoretical principles underlying

both DLS and DWS for the specific case of scattering from a colloidal suspension of

spherical particles in solution. We assume these particles are a collection of non-

interacting colloidal spheres following a dynamical rrownian motion process. Section

2.1 will develop the theory of DLS for the single scattering limit while Section 2.2

will develop the theory of DWS for the multiple scattering limit. Our discussion will

largely follow those contained within [3, 5].

2.1 The single scattering limit

Let us consider a dilute sample of N colloidal particles. We will denote the position

of each particle j, where 1<j<N, as a function of time by r(t). Laser light of

constant wavelength A illuminates the sample and each photon traversing the sample

is assumed to scatter at most once. The incident wavevector, ko, is defined to be

27r-
ko = -ko, (2.1)

where the unit vector ko defines the direction of propagation.

Light that is scattered through an angle 0 will subsequently have a different

wavevector, k,. For quasi-elastic light scattering, Ikol = Ik, . The scattering wavevec-
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tor. q. is then defined to be

q - k - ko. (2.2)

Under the assumption of quasi-elastic scattering. it is easy to show that the magnitude

of q is

q = 2kosin (-) . (2.3)

If the magnitude of the electric field of the laser light scattered from a single par-

ticle collected at the detector is E0, then the magnitude of the total scattered electric

field. E, as a function of time at the detector can be written as the superposition of

the scattered electric fields from all N particles in the sample as

N

E(t) = EEoezq rJ (t) (2.4)
j=l

The argument of the exponential represents the scattering phase shift that depends

on the position of each particle in the sample. Because the position of each particle is

a function of time, the phase of the scattered electric field from each particle also is a

function of time. The magnitude of the total scattered electric field will not fluctuate

over time, though. WVhat will fluctuate over time is the scattered intensity, I(t) (the

physical quantity which can actually be detected). defined to be

I(t) = E*(t).E(t), (2.5)

(the tdenotes the complex conjugate) which will randomly fluctuate dle to the

random fluctuations of the particles in the suspension.

These fluctuations c(an be characterized b the intensity autocorrelation flnction,

.92 (t), define( to )be

(I(t)I(t = 0)) = 1 + 3g1 (t)12, (26)
92(t) - 1+/3 (+ (t)2, (2.6)

where ,3 is a constant determined by the collection optics of the experimental appara-
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tus. (I(t)I(t = 0)) denotes the timle-averaged integrated intensity (I(t 0))2 denotes

the ensemble average of the intensity over many scattering events at t = 0. and gl(t)

is defined to be the electric field autocorrelation function. In general, gl(t) is given

bv

- ,1 EkZ l (exp{iq [r (t = 0) - rk(t)]})
.q (). (2.7)

F(=1 Z k=l (exp{iq [r,(t = 0)- rk(t = 0)]})

For the case of non-interacting (uncorrelated) particles, the cross-terms j4k vanish

to give

91(t) = (exp[-iq-.Ar(t)]), (2.8)

where Ar(t) _ r(t) - r(t = 0). Thus, gl(t) will have decayed appreciably when

q-Ar(t) m . If we assume the displacement of the particles, r(t), is a Gaussian

random variable, it follows that

g (t) = exp - 2 (r(t)fl (2.9)

A standard result of Brownian motion is that (r(t)) 2 = 6Dt, where D is the particle

diffusion coefficient. Thus, our final form for the intensity autocorrelation function in

the single scattering limit is

92 (t) =1 + I3 [] 2 (2.10)

where T- - is the time constant for the decay of 5l. Thus, in DLS measurements

92 is expected to decay as the square of an exponential whose argument is a function

of the scattering wavevector, q, and hence, the scattering angle, 0.

13



2.2 The multiple scattering limit and the diffusion

approximation

In the multiple scattering limit, there are two different length scales which become

important: the mean free path I and the transport mean free path l*. The mean free

path is defined to be the average distance between successive scattering events while

the transport mean free path is defined to be the length scale over which the direction

of light propagation within the sample becomes completely randomized. Because the

direction of propagation is assumed to become completely randomized within the

sample, the scattering wavevector, q, should have little relevance to the intensity

autocorrelation function. Thus, there exist two different experimental geometries in

DWS measurements: transmission and backscattering. The transmission geometry

refers to the experimental geometry in which the light is incident on one side of the

sample while the scattered light is collected from the other side of the sample. The

backscattering geometry refers to the experimental geometry in which the light is

incident on one side of the sample and the scattered light is collected from the same

side of the sample. In what follows, both in our discussion of the theory and in later

discussion of our experiments, we will consider only the transmission geometry.

2.2.1 The transport mean free path

As is discussed in [5], the transport mean free path will take on different values

depending upon the value of koa, where a is the radius of the particles. If k0 a<<l, the

direction of propagation will generally become randomized after a single scattering

event, making I = I* in this case. For larger particles, though, several scattering events

will be required before the direction of propagation becomes completely randomized,

making l* > I in this case.

These two length scales can be determined experimentally by measuring the trans-

mission coefficient T of a plane wave of light through a sample of thickness L. If L>>*,

as is usually the case, T = 31' and almost all of the transmitted light will have been5L
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scattered [6]. It is in this limit that the propagation of the light through the sample

is assumed to be diffusive. In particular, the fundamental assumption is that each

photon that propagates through the sample executes a random walk of step size *.

In general, it is assumed that the number of steps executed will be large when L>>l*.

2.2.2 The electric field autocorrelation function for multiple

scattering

The aim in this section is to sketch a derivation for the electric field autocorrelation

function, gl, as presented in [5].

In the transmission geometry, light from a laser is incident on one side of a sample

of thickness L>1* while the scattered light is collected from the opposite side. We

will assume that a single photon traversing the sample undergoes N scattering events

and leaves the sample with a scattering phase that depends on its total path length,

s, through the sample. The total path length is given by

S = E lrj+l jl - rj), (2.11)
j=O j=O j

where kj is the wavevector of the photon after j scattering events, rj is the position of

the jth particle that the photon scatters from. ro is the position of the laser, and rN+1

is the position of the detector. Because we assume that the scattering is quasi-elastic,

kj = ko Vj.

Thus, in analogy to the scattering phase shift we introduced in Section 2.1, the

total phase shift for all N scattering events will be

N

X(t) = kos = k3( (t) - r (t)t)] (2.12)
j=o

The total scattered electric field at the detector will be a superposition of the scattered

fields resulting from all possible paths through the sample. Thus, the total scattered

electric field at the detector, E(t), can be written as

15



(2.13)

where the sum now rns over all possible paths p, Ep is the amplitude of the scattered

electric field resulting from path p, and Op(t) is the scattering phase shift associated

with path p. This equation is of exactly the same form as Eq. (2.4). The difference

is that in the single-scattering case there was only one scatterer per path, so the sum

over all possible paths and all scatterers reduced to a sum only over all scatterers.

Another important difference is that the scattered electric field Ep associated with a

path p is no longer simply determined by the intensity of the laser beam. Instead, Ep

is now dependent on both the laser beam intensity and also the number of scattering

events per path.

The electric field autocorrelation function now becomes

g1(t) = I) (( Epeip(t=o) ( Epe-ip(t))) (2.14)

where (I) is the total average scattered intensity at the detector. To further sim-

plify our expression for gl(t) we will assume that terms with p $ p' in Eq. (2.14)

do not contribute and the scattering phase and the electric field amplitude Ep are

independent at the detector. Incorporating these assumptions gives us

g(t) =( ) eit)]ei[ (t=)-P(t)]) (2.15)

where (Ip) _ (lE 2) is the average intensity from path p. We now also define

'(A - (t ) - (t = t )
N N

= Zk,(t)[r3+(t) - rj(t)]- Ekj(t = O).[r3+1 (t) - r(t = 0)3
J=0 j=o
N N

= qj.Arj (t) + i AZkj(t)[rj+l(t) - rj(t)], (2.16)
j=I 3=0

where we have also defined qj = kj(t = 0) - kj_l(t = 0), Ak (t) kj(t) - k3(t = 0),

16
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and Arm r rj(t)-rj(t = 0). To first-order, Akj (t) I [rj+l(t)-r,(t)] and therefore the

second term in Eq. (2.16) can be neglected relative to the first term. Thus, Eq. (2.16)

reduces to

N

AS\p(t) = E qjArj(t). (2.17)
j=l

where the magnitude of q is as given in Eq. (2.3).

As is discussed in greater detail in [5], under the assumption that N is very large,

by the Central Limit Theorem, Aqp(t) will be a Gaussian random variable. Further,

we will assume that the successive scattering phase factors, qj -Arj (t), are independent

and also that the scattering wavevectors qj and the displacement vectors Ar j (t) are

independent. Under these assumptions,

(e-iAp(t)) = e-(A2(t))/2 (2.18)(2.18)

and

(zA2(t)) = N(q2)(Ar2(t)). (2.19)

[5] discusses how the average over q2 can be expressed in terms of the mean free

path and the transport mean free path. We state the result, which is

(q2) = 2ko2 (2.20)

For long light paths (in the limit N>>1), the total path length through the sample

will be s = Nl. Using this result and Eq. (2.20) Eq. (2.19) reduces to

(Az\ 2(t)) = 2k2(Ar2(t)) (2.21)

Thus, the scattering mean free path, I, drops out of the final expression for (XP(t))

which means the transport mean free path, 1*, is the only relevant length scale. This

result implies that for length scales which are much greater than 1*, the temporal

17



fluctuations of the scattered light can be described within the photon diffusion ap-

proximation.

Once again using the standard Brownian motion result, (Ar 2 (t)) = 6Dt, we arrive

at

(Aqp2(t)) = 4kDt. (2.22)

Thus, the scattering phase shift depends only on the path length s of the light.

As a result, the sum over paths in Eq. (2.13) can be rewritten as a sum over path

lengths, provided that the fraction of scattered intensity associated with path p, (P),

is replaced by the fraction of the scattered intensity in paths of length s, defined to

be P(s).

Using all of the above results, the electric field autocorrelation function can be

written as

gl(t) = yP(s)exp (-2kDt) (2.23)

Thus, gl is reduced to the problem of determining the path-length distribution of the

scattered intensity, P(s). By passing to the continuum limit, Eq. (2.23) becomes

g1(t) = 0 (s)e-(2t/r)s/lds, (2.24)

where , defined to be the characteristic diffusion time, is r _ k. This equation

is the basis for the calculation of intensity autocorrelation functions in DWS. This

result implies that a light path of length s corresponds to a random walk of -. steps

which decays, on average, e-2koDt, per step. The characteristic decay time for a path

of length s is t- which is the time it takes for the total path length to change by ~ A.

This result indicates the most rapid decay times will come from the longest paths as

the displacement of each particle will not need to be large for the entire path length

to change by ~ A.

18



2.2.3 The solution of the electric field autocorrelation func-

tion

The solution to Eq. (2.24) is very difficult and we will not attempt to outline the

solution in detail here. The key to the solution is the determination of P(s) for the

experimental geometry (in our case, the transmission geometry). As is briefly dis-

cussed in [41, the method by which P(s) can be calculated can be explained intuitively

as follows.

It is assumed an instantaneous pulse of light is incident on some finite area of

the sample at time t = 0. The photons that enter the sample follow a random

walk process until they exit the sample. Because the time it takes each photon to

traverse the sample is finite, there will be a delay between the time when the light

is incident on the face of the sample and the time when it is detected after having

exited the sample. This light intensity will rise to some maximum and then return

to zero after all photons have exited the sample. Photons arriving at the detector

a time t following the incident pulse will have traversed a distance s = vt where v

is the average speed of light within the sample. The flux of photons arriving at the

detector will be Jut(rot, t) where rt indicates the position of the detector. The

flux at time t will be proportional to the fraction of photons that travel a distance

s = vt, or, as described in the previous section, to P(s). For length scales greater

than the transport mean free path, the transport of light through the sample can

then be modeled with the diffusion equation

au
= D1V2U, (2.25)

where U is the energy density of light (or alternatively, the number of photons per

unit volume) and DI = -' is the diffusion coefficient of the light.

It is assumed that at time t = 0 an instantaneous pulse of light has just begun to

diffuse at a distance zo = 71* inside the sample, y > 0. That is, because the light is

randomized within the sample at a distance comparable with 1*, the incident pulse is

described as an instantaneous source of diffusing light. Thus, the initial condition is

19



UT(Z t = 0) = /0 6(Z - Z0. f = 0). (2.26)

In addition to this initial condition, the boundary condition for the diffusing light

must also be specified. This is obtained by imposing the req(uirement that for t > 0

the net flux of diffusing light into the sample must be identically zero. The result is

the boundary condition

9
U + 31Ifi-VU = 0, (2.27)

3

where fi is a normal unit vector directed out of the sample.

Using these boundary conditions, the diffusion equation, Eq. (2.25), can be solved

and the resulting solution U(r) will be valid for all points within the sample. Using

this solution, the time-dependent flux of photons exiting the sample can be calculated.

In addition, because all light emerging from the sample at time t has traveled a

distance s = vt, the fraction of light, P(s), that travels a distance s through the

sample is simply proportional to the flux emerging at time t = . Thus, P(s) is given

by

P(s) oc IJo,,t (r, t) ro,,, = D i VUIro,. (2.28)

Once an expression for P(s) has been obtained for a given experimental geometry,

gl(t) can be calculated using Eq. (2.24).

2.2.4 The intensity autocorrelation function for the trans-

mission geometry

The solution of gl(t) for this experimental geometry is given in [7]. For light incident

from an extended plane wave source impinging on a sample of thickness L, the electric

field autocorrelation function can be written as

20



L sinh[-y 7

gl(t) = L sin /j (2.29)
l'f* sinh[. r!V '

For comparison with experiment, the intensity autocorrelation function for the trans-

mission geometry for an extended plane wave source incident on a sample of thickness

L is

L sinh Li4t (2.30)92(t) = + 3 [7~+;:~~1?;i~ ~J , (2.30)2(t) =1+P 1 y* sinh[ ILv/ ,Li 

where again it is assumed 3 is a constant determined by the collection optics of the

experimental geometery. The functional form appears to be complicated, but g2 (t) de-

cays nearly exponentially with time. As expected, in contrast to the single scattering

limit in DLS measurements, g2 (t) is independent of q and hence, the scattering angle.

Thus, the collection angle of the detector should have no effect on measurements of

g2(t).
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Chapter 3

The experimental apparatus and

procedure

In this chapter we will provide a detailed description of the experimental apparatus

we used for our DLS and DWS experiments on polystryrene latex spheres suspended

in glycerol and also the procedure we followed during our experiments.

3.1 The samples: polystyrene latex spheres in glyc-

erol

The samples we chose to investigate were colloidal suspensions of polystyrene latex

spheres of 650 A radius suspended in an anhydrous glycerol solution. Glycerol was

chosen because its high viscosity (approximately 14 Poise at room temperature) con-

siderablv slows the dynamics of the system thereby rendering measarements of the

temporal intensity fluctuations of the speckle pattern feasible.

3.1.1 Preparation of the samples

For our experiments, we chose to investigate samples with volume fraction concen-

trations, which we will denote by , of 0.001, 0.005. and 0.01 in the dilute (single

scattering) limit and higher volume fractions, = 0.025, 0.05, and 0.075, which we
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expected to exhibit multiple scattering properties. To prepare these samples, we

diluted pre-existing high volume fraction samples prepared at Yale University with

anhvdrous glycerol.

We used the following "recipe" to prepare our samples. Let a denote the volume

fraction concentration of the pre-existing samples, X denote the volume fraction con-

centration desired following dilution, Al denote the mass of the pre-existing sample

to be diluted, IMG denote the mass of glycerol contained within Al, Aps denote the

mass of polystyrene contained within Al, V denote the volume of the pre-existing

sample to be diluted, V' denote the volume of the glycerol contained within V, V/PS

denote the volume of the polystyrene contained within V, PG denote the density of

glycerol, and PPS denote the density of polystyrene.

It follows that

Vps
C = + V and M = PGVG + PPSVpS. (3.1)

lisP+ VG

Solving for Vps and VG gives us

VP P= Pls+ () ndVG=VpS1( (3.2)

Now, let G denote the mass of glycerol to be added to the pre-existing sample in

order to dilute it to a X volume fraction concentration. t follows that

= PV p _P = V PG(VPS + VG). (3.3)G+VPS+-G -

PG

The following table summarizes how our samples were prepared.
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Table 3-1: Sample preparation

* Indicates samples prepared at Yale.

Following preparation, the samples were

measurements.

stored in air-tight vials until needed for

3.1.2 The sample holders

Special sample holders were constructed to hold the samples during experiments.

These sample holders consisted of one stainless steel plate with a 3.7 mm deep circular

hole of radius 6.4 mmn and another stainless steel plate that was attached to the other

plate via screws. The sample was shielded from the open air by glass windows of 1

mm thickness which were attached to the stainless steel plates with epoxy. The hole

containing the sample was made air-tight with an O-ring which was placed between

the two stainless steel plates. After sealing with the windows and the O-ring, the

resultant thickness of the sample probed during measurements was approximately

2.2 mm thick.

3.2 The DLS experimental apparatus

3.2.1 The laser

Our source of light was a laser emitting light of constant 6328 A wavelength manufac-

tured by Newport. The peak power of the laser was rated at 5 milliwatts. The laser
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ML (grains) G (grains) c

0.41* 0.175 0.834 0.075

0.34* 0.267 1.689 0.05

0.26* 0.404 4.011 0.025

0.05 0.606 1.861 0.01

0.01 0.733 0.644 0.005

0.01 0.199 1.425 0.001



was normally turned on at least 2 hours prior before measurements were attempted

in order to ensure thermal equilibrium was established (the intensity of the laser

would fluctuate to a large degree shortly after being turned on). The beam could

be stopped at any time during measurements with the use of an electromechanical

shutter manufactured bv UniBlitz.

3.2.2 The spatial filter

The light emitted by the laser was then directed through, in the following order,

a polarizer, a quarter-wave plate, and another polarizer, all of which reduced the

intensity of the beam by a factor of approximately 100. The beam was then spatially

filtered and then focused by a lens to a point a very short distance in front of the

sample holder.

3.2.3 The sample mount

The sample holder described above was screwed onto a vertical stainless steel sample

mount which was heated and cooled by a Lakeshore DRC-93C temperature controller

powered by a Hewlett-Packard system power supply operated at a voltage of 12 Volts

and 2 Amperes of current. In addition, to aid in maintenance of thermal equilibrium,

a Endocal Refrigerated Circulating Bath filled with anti-freeze was used to circulate

the anti-freeze in and out of a heat reservoir the sample mount was placed in contact

with. The circulator was used to bring and subsequently maintain the temperature

of the sample holder in the general vicinity of the desired temperature while the

temperature controller was used to attain precise temperature levels. In addition,

thermal conductivity paste was applied to the side of the sample holder in contact

with the vertical sample mount prior to mounting. This temperature controlling

apparatus was capable of maintaining temperatures ranging from -20 C to 80 C with

a precision of ±0.2 C.
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3.2.4 The second lens and the beam stop

Upon leaving the sample. the scattered light was collected with a second lens and

directed into the detector, which will be described shortly. In order to prevent the

detector from becoming oversaturated due to non-scattered light near the beam cen-

ter, the main beam was blocked with a beam stop (a black piece of plastic).

3.2.5 The detector

The detector we used was a Pulnix TNM-7CN charge coupled device (CCD) camera

capable of full frame transfer operating at room temperature. The advantage of using

a CCD detector is that there exists a one-to-one mapping between the intensity of

the light scattered at different scattering angles and the signal from a pixel at that

scattering angle [2]. The pixel matrix of our detector was a rectangular 768x494

array with each pixel cell spanning a 8.4 plm x 9.8 jlm cell. The relatively small size

of each pixel results in a very high angular resolution. However, a drawback of using

a CCD detector is that the primary source of noise is the dark current, and this limits

the dynamnic range to -2 to 3 decades [2].

The video signal out of the camera was NTSC video format and was digitized by

an 8-bit Mlatrox Meteor framegrabber. This framegrabber was capable of capturing

and subsequently storing 640x480 pixel arrays in real time. The framegrabber was

installed in a 32-bit PCI slot in a Gateway 2000 P5-166 personal computer with a

166 MHz Pentium processor, 128 megabytes of RAM, and a Linux operating system.

The operation of the framegrabber was controlled with SPEC, x-ray diffraction and

data acquisition software. With the operating system in place, it was possible to

capture and store in memory approximately 5 data frames per second, each of which

was 0.615 megabytes.
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3.3 The DWS experimental apparatus

The experimental apparatus used for the DIWS measurements was nearly identical

to that for the DLS measurements except for three important differences. First, the

lens that was previously used to collect the scattered light was eliminated. Second,

the camera was focused on the glass window of the sample holder in order to detect

the light immediately after having exited the sample. Third, because the camera

was focused on the surface of the sample holder, the beam stop used in the DLS

experimental set-up was eliminated. To block the main beam, a small piece of black

electrical tape was attached to the surface of the sample holder which effectively

shielded the CCD detector from oversaturation.

3.4 The experimental procedure

In this section we will describe our experimental method and the procedure which

we followed to acquire our data. The samples were transferred from their air-tight

vials to the sample holders with sterile plastic syringes. The sample holder was then

screwed onto the sample mount after a thin coat of thermal conductivity paste was

applied to the side of the sample holder in contact with the vertical sample mount.

The temperature controllers were then adjusted to the desired temperature. The

samples were generally allowed to sit undisturbed for approximately 30 minutes prior

to the start of measurements in order to ensure that the sample had been adequately

heated or cooled to the desired temperature.

As stated previously, the laser generally was turned on at least 2 hours prior to

the start of measurements in order to ensure that the incident intensity would not

fluctuate wildly during measurements. Also, prior to the start of measurements, all

of the lights in the room were turned off in order to minimize the amount of stray

light entering the CCD detector. Data was then collected as a time series of 20 dark

frames (measurements made with the beam blocked by the electromechanical shutter

in order to determine the level of the dark current) followed by a time series of 600
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data frames (for the dilute samples) or a time series of 200 data frames (for the high

volume fraction concentration samples) with each frame containing a measurement

of the scattered intensity over a range of scattering angles at the time at which the

frame was taken. These data sets, as described above, would then immediately be

saved in real time to the hard disk with the framegrabber.

iMeasurements of each sample were taken at several different temperatures ranging

from -10 C to 60 C. Following measurements at one temperature, the temperature

controller would be reset to the desired temperature. Again, to ensure that the

samples had been adequately cooled or heated prior to the start of measurements,

the sample would generally be allowed to sit undisturbed for at least 30 minutes.

3.5 Calibration of the apparatus

In order to determine the scattering angle associated with each pixel, we carried

out the following calibration procedure. A holographic glass plate was placed in the

sample holder and mounted to the vertical sample mount. The holographic image, as

imaged by the CCD camera, was a square grid partitioned into 81 small squares. The

beam center was determined by averaging the coordinates of the four corners of the

grid. To determine the scattering angle, the distance between the small squares, in

pixels, was recorded. As the width of each of these 81 smaller squares corresponded

to a scattering angle of 2 degrees, it was possible to use Eq. (2.3) in the limit of 0<1,

q = 2kosin (2)

47r /\
= - sin I-

A \2J

2r
A 0 for O<<1, (3.4)

to approximate the linear change in q per pixel, -a-. Knowledge of this quantitypixel

provided the basis for the one-to-one mapping between a pixel and its corresponding

scattering angle.
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Chapter 4

Data analysis

In this chapter we will describe the computer algorithm used to reduce the raw data

(time series of 640x480 two-dimensional pixel arrays with the detected signal at each

pixel corresponding to the intensity of the scattered light at the scattering angle

corresponding to that particular pixel) to the desired physical quantity we intended

to probe: the normalized intensity autocorrelation function. The discussion below

will describe in detail the calculational procedure used to obtain an estimator for

g2(t) and will largely follow that given in [8].

4.1 Preliminary definitions

As discussed in Section 2.1, the intensity autocorrelation function is defined to be

g2 (t) 1 + I( t)I(q, 0)) (4.1)(I(q,t = 0))2

where we have arbitrarily defined t = 0 to be the time at which measurements are

commenced. I(q,t) denotes the scattered intensity (strength) at wavevector q at

time t. We also define T to be the exposure time during which a single scattering

pattern is acquired. If this exposure time, T, is smaller than the time over which

the intensity autocorrelation function becomes memoryless (i.e. it decays) then the

CCD pixel arrays will contain observations of what are termed speckled instances of
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the scattering function. The goal of the analysis routine is to obtain an estimator for

g2(t) from a series of such speckled patterns.

In what follows, the analysis routine will discuss averages over three different types

of parameters. First, time-averages over sequences of data frames will be denoted by

(.--). Second, azimuthal averages, which make use of the circular symmetry of the

smoothed scattering pattern fi:om an isotropic sample (which the samples we studied

satisfy), will be denoted by . Last, spatial averages over sub-regions of the pixel

arrays will be denoted by avgR(.- ), where R denotes the subregion of pixels over

which the spatial average is to be calculated.

An important aspect of the analysis procedure that must be emphasized is that

it is not possible to experimentally measure the instantaneous scattered intensity,

I(q, t) due to the finite exposure time, T, of the CCD detector. However, the instan-

taneous scattered intensity is replaced in the analysis routine with an integral of the

instantaneous scattered intensity over the exposure time. The integrated intensity,

defined to be

rt+ 
ji(ql, t, T)= T I(q, t)dt, (4.2)

2

will replace the instantaneous scattered intensity for the remainder of this discussion.

To simplify the notation, the parameter T will be excluded from our expression tor

the integrated intensity and will instead be referred to simply as P(q, t).

The scattered intensity as received by the CCD detector is output to the framegrab-

ber as a time series of two dimensional pixel arrays (the data frames) which will be

denoted by I(s, r), where s = (x, y), with x, y integers, denotes the pixel positions

and r represents an index denoting the time steps of the data frames in the time

series. It is assumed that the time steps are of approximately equidistant spacing,

6t, with this spacing representing the total time necessary for the CCD detector to

acquire one data frame, the framegrabber to capture and digitize this data frame,

and the framegrabber to subsequently store this data frame on the hard drive of the

PC. (For our experiments, 6t was approximately 0.2 seconds.)
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Now, the (x, y) plane of the detector is divided into pixel subregions Ri such that

RinRjC0 V ij. After having found the position of the incident beam, (x0 , yo), and

the value of Aq/pixel, as described in Section 3.5, the average wavevector, qi within

some subregion Ri can be calculated by averaging over all the wavevectors, qi, in R,.

where k indexes the pixels in Ri, as

q = avgR, {qik (4.3)

4.2 Partitioning reciprocal space

It is now necessary to explain the method by which reciprocal space, that is, the

space spanned by the scattering wavevectors, q, is partitioned into the subregions,

Ri, described above. For all the analysis which we carried out, the Ri were concentric

circles about the origin of reciprocal space (i.e. q = 0). The operation avgR, thus

corresponds to an average in the azimuthal direction and also an average in the radial

direction over some finite interval, Aqi, of scattering wavevectors. (For the remainder

of this discussion, we will discuss only the magnitude of the scattering wavevectors,

q,. and not the wavevectors, q, themselves due to the fact our subregions R2 are

concentric circles about the origin of reciprocal space.)

Several conflicting factors need to be considered when determining how to par-

tition the reciprocal space into the above described concentric circles. Although it

would be highly desirable to have an equal width Aq for each concentric ring of pixels

in reciprocal space, this is in direct conflict with that fact that: 1) the scattered in-

tensity decreases with higher wavevectors, and 2) fixed width concentric rings would

lead to a decreasing number of pixels within subregions of smaller q, thereby reducing

the quality of the data relative to subregions with larger values of q.

As such, an intensity-weighted algorithm was used to choose the sequence of Aqj.

This algorithm chooses a sequence Aqi such that

31



V i,j : (L(q)) = E ((q))3. (4.4)
qER, qERj

Now. after having partitioned reciprocal space, it is then possible to obtain an esti-

mator for the intensity autocorrelation function for each subregion of pixels, R,. How

this is accomplished is described in the next section.

4.3 The calculational procedure for estimation of

g2(t)

Given a time series of N two-dimensional arrays of scattered intensity speckle pat-

terns, an estimator for 92 (t) can be obtained in the following manner. The statistically

unbiased estimator for the time averaged integrated intensity is (l(q, t)) ((q)),

where

(pl(q)) = l(q, n). (4.5)

Because parasitic scattering may exist, especially at small scattering angles, it

is preferable to choose a normalization which restricts the effects of the parasitic

scattering to a small number of the subregions, R,. This is accomplished via the

following normalization scheme

(t) (q, r) = ag(q, r) avgR (t(q)) (4.6)
avgR, (q, r)'

This normalization scheme is valid provided that qERi.

The above construction of ^f(i)(q, r) now provides the basis for a calculation of

what is defined to be the temporal autocorrelation,

2 (q, k) 1 N-k
G2(qk) = N - k I (i)(q, n)t(')(q, n + k), (4.7)

n=1

where the the above expression is valid provided qER. (The integer k is a member of

the set {1,.. ., N- }.) Further, subsequent normalization with the time-averaged, az-
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imuthally smoothed scattered intensity pattern gives an estimator for the normalized

intensity autocorrelation function,

2(qk) G2 (q, k)
g2(q, k) = 2'_ (4.8)

The relationship

avgR, (i(")(q)) = avgR, (i(q)), (4.9)

justifies this choice of normalization. Finally, to obtain g2(q, t), it is simple to use the

relationship t = k6t.

The choice of this estimator also allows a determination of the constant, 3, in Eq.

(4.1). /L known as the speckle-contrast, is the extrapolated t = 0 intercept of the

normalized intensity autocorrelation function,

limt-o0g2(q,, t) = 1 + /(qi), (4.10)

where we have replaced q with its average magnitude, , in the sub-region /P. As

written, the speckle contrast as a function of the scattering wavevector, (q,), is

a characteristic property reflective only of the collection optics of the experimental

apparatus and independent of any sample properties.

The calculational procedure described above to obtain an estimator for g2 (t) was

implemented as a computer code by Dirk Lumma in the Yorick language. The intent

of the code was to provide a simultaneous evaluation of g2(t) for all subregions Ri of

the two-dimensional pixel array.
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Chapter 5

Experimental results and

discussion

The calculational procedure described in the previous chapter was used to reduce

the raw data to intensity autocorrelation functions. To quantify our experimental

measurements of the intensity autocorrelation functions, the data was fit using a non-

linear fitting routine implemented in Yorick to the finctional forms given previously

in Eq. (2.10) for the low volume fraction (dilute concentration) limit and to Eq. (2.30)

for the higher volume fraction concentration samples.

5.1 The single scattering limit: q = 0.001, 0.005 and 0.01

The data sets for these low volume fraction concentration samples consisted of 620

data frames (with each a two-dimensional 640x480 pixel array taken at regular time

intervals of approximately 0.2 seconds), of which 20 data frames were dark frames

and 600 frames were data frames.

The analysis of these data sets was performed using the code described in the

previous section. The dark frames were taken in order to determine the level of the

dark current, the primary source of noise in a CCD detector (as discussed in Section

3.2). To analyze the data frames, a 171 x 141 rectangular region of pixels was used for

the analysis spanning wavevectors ranging from approximately q = 0.000156 A-' to
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q = 0.000376 A-'.

To subldivide this rectangular region into the the subregions R, described in the

previous chapter, we specified that the analysis routine divide this region of reciprocal

space into 18 (lifferent partitions according to the algorithm described by Eq. (4.4).

The table below summarizes the number of pixels contained within each of the 18

sllbregions of reciprocal space.

Table 5-1: Partitions in reciprocal space

subregion used

and the number of

for analysis.

pixels within each

The computer code returned values for the intensity autocorrelation function g2 (t).

To quantify these results, a non-linear curve-fitting routine also implemented in Yorick

was used to fit the returned values for g2 (t) to the form for g2(t) in the single scattering

limit as discussed in Section 2.1,

92(t) = 1 + P [e-t/] 2 (5.1)

To do so, we fitted the data to the following three parameter function

g2 (t) = a, + a2 [e-ta3 (5.2)
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Region q [A-'] Number of pixels Region q [A-1] Number of pixels

1 0.000156 1181 10 0.000269 1353

2 0.000171 1222 11 0.000282 1360

3 0.000183 1202 12 0.000296 1403

4 0.000195 1233 13 0.000309 1390

5 0.000207 1283 14 0.000322 1441

6 (.000219 1277 15 0.000335 1407

7 0.000231 1329 16 0.000349 1438

8 0.000244 1334 17 0.000362 1436

9 0.000257 1371 18 0.000376 1451



where the ai denote the fitted parameters. al is termed the "baseline". a2 is the

speckle-contrast discussed in Section 4.3, and a3 = ! where, as discussed in Section

2.1, T - Dq2

Shown below in Figures 5-1, 5-2, and 5-3 are plots of the intensity autocorrelation

functions and the fitted values of r for the three dilute samples, = 0.001,0.005,

and 0.01 samples at 60 C spanning three decades of time ranging from approximately

0.1 seconds to 100 seconds.

These figures illustrate a number of the important features of the intensity auto-

correlation functions we expected to observe in the single scattering limit. First, as

expected in the single scattering limit, g2 (t) is dependent on the scattering angle, as is

evident from Figure 5.3. Second, as is also evident from Figure 5.3, in the dilute limit

of single scattering, the time constants are essentially constant across concentration.

5.2 The multiple scattering limit: = 0.025,0.05, and 0.075

The data sets for the samples that will be discussed in this section consisted of 220

data frames (with each a two-dimensional 640x480 pixel array taken at regular time

intervals of approximately 0.2 seconds), of which 20 data frames were dark frames

and 200 frames were data frames.

For these samples, we expected to observe characteristics of multiple scattering.

As discussed in both [9, 10], in the multiple scattering regime, a weak localization

of scattered photons around the angle of incidence in the backscattering geometry

should be observed as a "cone" of scattered intensity peaked at q = 0 A - '. For our

experiments, we did observe this same phenomenon, also termed Anderson localiza-

tion (localization due to randomness) in the transmission geometry. In Figure 5-4, we

show our measurements of the average correlated scattered intensity spanning a range

of wavevectors ranging from approximately 2 xi0 - 4 - I to 9 x 10 - 4 A-' for all three

samples at 0 C. We were unable to observe values for the average correlated scattered

intensity at lower q values because the beam stop made measurements at very low

scattering angles impossible. As such, we were unable to determine the variation of
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Polystyrene Latex in Glycerol [=0.005, 600 C]

01 1.0 100 100.0

01 10 100 1000

0.1 10 100 1000

0.1 1.0 100 100.0

01 1 0 100 1000

01 1.0 10.0 100 0

Time [s]

Figure 5-1: g2(t) for - 0.005 at 60 C. Shown are 6 selected values of q. The speckle
contrast is approximately constant across q with a value of -0.3 and the fitted baseline
is essentially 1.
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Polystyrene Latex in Glycerol [600 C]
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1000
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Figure 5-2: g2 (t) for = 0.001,0.005, and 0.01 at 60 C at approximately similar
values of q. The speckle contrast varies due to the fact that the arrangement of
the collection optics was slightly different for each sample. The fitted baseline, as
expected, is essentially 1.
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Polystyrene Latex in Glycerol [60° C]
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Figure 5-3: The fitted values of r for = 0.001, 0.005, and 0.01 at 60 C for the 18
different values ot q into which reciprocal space was partitioned during the fitting
routine. The solid line indicates the theoretical values we calculated for '- = 2 We
note our fitted values do not correspond precisely with the theoretical values which
we attribute to experimental error.
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Polystyrene Latex in Glycerol [00 C]

amC

a)

oC)c0

0)0

2. 4. 6. 8.

q [Ang- 10]

Figure 5-4: The average correlated scattered intensity for & = 0.025,0.05, and 0.075
at 0 C.

the cone's height at q = 0 A-' over concentration.

The variations in the magnitude of the scattered intensity appear to be fairly con-

stant across concentration. However, the scattered intensity does appear to increase

slightly with concentration, as expected. As previously stated, a better verification

would have been obtained if we had been able to observe the value of the scattered

intensity at q = 0 A-', as both [9, 10] report that the height of the cone should

increase with concentration.

To perform the analysis of these data sets, we again used the code described in

Chapter 4. Again, 20 dark frames were taken in order to determine the level of the

noise (the dark current) followed by a time series of 200 data frames. To analyze

these data frames, a 201x201 square region of pixels centered at q = 0 A - ' spanning

wavevectors ranging from approximately q = 0.000158 A-' to q = 0.000714 - 1' was

used for the analysis.

To divide this region into the Ri subregions discussed in Chapter 4, we specified
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that the analysis divide this region of reciprocal space into 9 different partitions

according to the algorithm described by Eq. (4.4). The following table summarizes

the number of pixels contained within each of these 9 subregions of reciprocal space.

Table 5-2: Partitions in reciprocal space

subregion used

and the number

for analysis.

of pixels within each

The computer code again returned values for the intensity autocorrelation fi:nc-

tion, g2 (t). To quantify our results, the same non-linear fitting routine written in

Yorick used in the single scattering limit was used to fit the returned values of g2 (t)

to the form for g2(t) in the multiple scattering limit as discussed in Section 2.2.4,

g2(t) = 1 + _ 7/3 * inh[ V-(5.3)

If the non-linear curve fitting routine were used for this function, the fit would a

require five parameter function,

92(t) = al + a2 a4 sinh[aV6taj , (5.4)a4 sinh[a3 v/GlthS

where the a, denote the fitted parameters. [al is again the baseline, a2 is the speckle-

contrast, a3 = , a4 = -y, and a5 = = Dk2.]I' ' a4 3.J~~~~~
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Region q [-'] Number of pixels

1 0.000158 4896

2 0.000274 3436

3 0.000342 3808

4 0.000403 4140

5 0.000460 4416

6 0.000513 4640

7 0.000563 4836

8 0.000615 4944

9 0.000714 5276



However, using a five-parameter fit would make the fitting results fairly inaccurate.

Thus, our goal was to reduce the above five-parameter fit to a three-parameter fit

via experimental measurement of the ratio iL and calculation of the characteristic

diffusion time, 7.

To experimentally measure L, as discussed in Section 2.2.1, we measured the

transmitted power for the three samples and compared this to the transmitted power

for a sample cell containing only anhydrous glycerol. Our results are summarized

in the following table. The X = 0 sample refers to the sample cell containing only

glycerol and the units of power are in microwatts.

Table 5-3: Transmitted intensity measurements and the experimental determination

of L.

A graph of our values for iL as a function of concentration are plotted in Figure 5-5.

As expected for volume fractions less than approximately 0.1, the data points are

nearly linear [6]. A linear regression of these three data points in which we forced the

intercept to be zero gave us

L
l* = (390.1 ± 93)q. (5.5)

To calculate values for the characteristic diffusion time, Tr = , we assumed that

D = Do, where Do is the Einstein-Stokes diffusion coefficient, defined to be

ksTDo = 6 (5.6)
67rqa'

where kB is Boltzmann's constant, T is the temperature as measured in Kelvins, q

is the viscosity of anhydrous glycerol, and a is the radius of the particles. Using the
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-$ Power [W] L

0 62.0

0.025 5.44 6.84

0.05 1.91 19.48

0.075 1.23 30.24



Polystyrene Latex in Glycerol
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n
0.00 0.02 0.04 0.06 0.08

Figure 5-5: Experimentally measured values of . for 0 = 0.025, 0.05 and 0.075.

calculated values for Do and the wavevector of the incident light, k0o = 0.000993 A-1,

we were able to calculate the following values for T as summarized within the following

table. (Note: we assumed that the value of Do at constant temperature was constant

for all three samples.) The temperature values are given in degrees Celcius.

T T

-10 119.8

0 39.8

10 12.4

Table 5-4: Calculation of = 1D for -10 C, 0 C and 10 C.

With our measured values of l and our calculated values for r, the five-parameter

fit was reduced to the following three-parameter fit

g2(t) = al + a2 [LI* sinh[a ] (5.7)
a3 sinh[ 5.7
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where al is the fitted baseline, a2 is the speckle-contrast, and a3 = y.

Shown below in Figures 5-6, 5-7, and 5-8 are plots of the intensity autocorrelation

functions and their fits for the three samples, e = 0.025, 0.05, and 0.075. The fits were

performed holding the values for and constant at the values determined above.

For our data, the fitted values of y ranged from approximately 2 to 20, consistent

with the values of y given in [4]. We show these in Figure 5-9. The figures provide a

basis for comparison across wavevector ranges, temperature, and concentration. All

of our data spans two decades of time, ranging from approximately 0.1 seconds to 10

seconds.

These figures illustrate a number of the important features of the intensity auto-

correlation functions we expected to observe in the multiple scattering limit. First, as

shown in Figure 5-6, g2(t) appears to be independent of the scattering angle. Second,

as shown in Figure 5-7, the data is fit well using our calculated values for T, which de-

crease with increasing temperature. This reflects the fact that the dynamics of these

samples "speed up" with increasing temperature, reflecting the expected scaling of

the diffusion coefficient, Do, with temperature. Third, as shown in Figure 5-8, our

measurements indicate that the intensity autocorrelation functions decay faster with

increasing concentration for the range of volume fractions we investigated.

5.3 Conclusion

We have performed a study of the dynamics of polystyrene latex spheres in glycerol

using the light-scattering techniques of dynamic light scattering and diffusing-wave

spectroscopy employing a charge coupled device (CCD) camera as our detector. We

probed the dynamics of our samples via temporal measurements of the scattered

intensity across a range of scattering angles which 'e quantified with intensity auto-

correlation functions. Our measurements explored the dynamics of three dilute sam-

ples in the single scattering limit, with volume fractions X = 0.001, 0.005, and 0.01,

and three samples which we expected to exhibit multiple scattering properties, X =

0.025,0.05, and 0.075. Our measurements in the single scattering limit spanned
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Polystyrene Latex in Glycerol [=0.05, T=0 0 C]
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Figure 5-6: g2 (t) for q = 0.05 at 0 C. Shown are 6 selected values of q. The speckle
contrast is nearly constant across q with a value of -0.04 and the fitted baseline is
essentially 1.
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Polystyrene Latex in Glycerol [=0.05]
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Figure 5-7: g2 (t) for q = 0.05 at -10 C, 0 C, and 10 C at approximately similar values
of q. The value of the speckle contrast for -10 C and 0 C is consistent with those in
Figure 5-6, but the speckle contrast for 10 C cannot be accurately determined because
of the inability to access times faster than approximately 0.1 seconds. As expected,
the fitted baseline is essentially 1.
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Polystyrene Latex in Glycerol [00 C]
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Figure 5-8: g2 (t) for 0 = 0.025, 0.05, and 0.075 at 0 C at approximately similar values
of q. The value of the speckle contrast for 0 = 0.025 and 0.05 is consistent with those
in Figure 5-6, but the speckle contrast for X = 0.075 cannot be accurately determined
because of the inability to access times faster than approximately 0.1 seconds. As
expected, the fitted baseline is essentially 1.
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Polystyrene Latex in Glycerol [00 C]
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Figure 5-9: The fitted values of y for q = 0.025,0.05, and 0.075 at 0 C for the 9
different values of q into which reciprocal space was partitioned during the fitting
routine.
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wavevectors ranging from 0.000156 A-' to 0.000376 A-1 over three decades of time

(0.1 seconds to 100 seconds). For the single scattering case we found that the inten-

sity autocorrelation functions are dependent on the scattering angle, as predicted by

theory. We also found that for our dilute samples, the time constants for the decay

rate of the intensity autocorrelation functions are essentially constant across concen-

tration. Our measurements in the multiple scattering regime spanned wavevectors

ranging from 0.000158 A- to 0.000714 A-' over two decades of time (0.1 seconds to

10 seconds). We found that g2 (t) appears to be independent of the scattering angle, as

predicted by theory. The data also appears to imply that the dynamics of our samples

"speed up" with increasing temperature, another characteristic we expected to ob-

serve. We also found that for the range of volume fraction concentrations we probed,

the intensity autocorrelation functions decay faster with increasing concentration.
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