145 research outputs found

    Molecular gas in low-metallicity starburst galaxies: Scaling relations and the CO-to-H2_2 conversion factor

    Full text link
    We study the molecular content and the star formation efficiency of 21 Blue Compact Dwarfs (BCDs). We present CO(1-0) and (2-1) observations, further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We find the CO luminosity to be correlated with the stellar and HI masses, SFR tracers, the size of the starburst and its metallicity. BCDs appear offset from the Schmidt-Kennicutt (SK) law, showing extremely low (\lesssim0.1 Gyr) H2 and H2+HI depletion timescales. The departure from the SK law is smaller when considering H2+HI rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction and H2 depletion timescale of BCDs is found to be strongly correlated with metallicity. Using this and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z(Z/Z)y\alpha_{CO, Z} \propto (Z/Z_{\odot})^{-y}, with y=1.5(±0.3)y=1.5(\pm 0.3) in qualitative agreement with previous determinations, dust-based measurements, and recent model predictions. Our results suggest that in vigorously star-forming dwarfs the fraction of H2 traced by CO decreases by a factor of about 40 from ZZZ \sim Z_{\odot} to Z0.1ZZ \sim 0.1 Z_{\odot}, leading to a strong underestimation of the H2 mass in metal-poor systems when a Galactic αCO,MW\alpha_{CO, MW} is considered. Adopting αCO,Z\alpha_{CO, Z} we find that departures from the SK law are partially resolved. Our results suggest that starbursting dwarfs have shorter depletion gas timescales and lower molecular fractions compared to normal late-type disc galaxies even accounting for the molecular gas not traced by CO emission in metal-poor environments, raising additional constraints to model predictions (Abridged).Comment: 18 pages, 14 Figures, 4 Tables: Accepted for publication in A&

    A Keplerian gaseous disk around the B0 star R Mon

    Get PDF
    We present high-angular resolution observations of the circumstellar disk around the massive Herbig Be star R Mon (M~8 Msun) in the continuum at 2.7mm and 1.3mm and the CO 1->0 and 2->1 rotational lines. Based on the new 1.3mm continuum image we estimate a disk mass (gas+dust) of 0.007 Msun and an outer radius of <150 AU. Our CO images are consistent with the existence of a Keplerian rotating gaseous disk around this star. Up to our knowledge, this is the most clear evidence for the existence of Keplerian disks around massive stars reported thus far. The mass and physical characteristics of this disk are similar to thoseof the more evolved T Tauri stars and indicate a shorter timescale for the evolution and dispersal of circumstellar disks around massive stars which lose most of their mass before the star becomes visible.Comment: 5 page

    High Resolution Aperture Synthesis Observations of Molecular Gas in NGC1068

    Get PDF
    We have obtained high resolution (2.9″∼260 pc) aperture synthesis imaging of NGC 1068 in the CO J = 1 → 0 line made with the Owens Valley mm Interferometer. The major features seen in CO are: (1) the inner spiral arms of molecular gas at ∼15″ radius (1.5 kpc) which originate from the ends of the central stellar bar, and (2) a compact source (∼3″) coincident with the Seyfert 2 nucleus. The components within 2 kpc of the galactic nucleus account for approximately 30% of the total molecular gas content in NGC 1068. The spiral arm CO emission is resolved into 38 discrete complexes which closely correlate with regions of strong Hα and 10 μm emission. The sizes of these structures range up to 500 pc and their masses derived from the CO line flux are 2×10^7−7×10^8M⊙. Somewhat smaller mass estimates are obtained from the virial theorem using the observed CO linewidths and sizes, suggesting that these complexes may be self-gravitating

    Detection and Mapping of Decoupled Stellar and Ionized Gas Structures in the Ultraluminous Infrared Galaxy IRAS 12112+0305

    Get PDF
    Integral field optical spectroscopy with the INTEGRAL fiber-fed system and HST optical imaging are used to map the complex stellar and warm ionized gas structure in the ultraluminous infrared galaxy IRAS 12112+0305. Images reconstructed from wavelength-delimited extractions of the integral field spectra reveal that the observed ionized gas distribution is decoupled from the stellar main body of the galaxy, with the dominant continuum and emission-line regions separated by projected distances of up to 7.5 kpc. The two optical nuclei are detected as apparently faint emission-line regions, and their optical properties are consistent with being dust-enshrouded weak-[OI] LINERs. The brightest emission-line region is associated with a faint (m_{I}= 20.4), giant HII region of 600 pc diameter, where a young (about 5 Myr) massive cluster of about 2 ×\times 107^7 MM_{\odot} dominates the ionization. Internal reddening towards the line-emitting regions and the optical nuclei ranges from 1 to 8 magnitudes, in the visual. Taken the reddening into aacount, the overall star formation in IRAS 12112+0305 is dominated by starbursts associated with the two nuclei and corresponding to a star formation rate of 80 MM_{\odot} yr1^{-1}.Comment: 2 figures, accepted to Ap.J. Letter

    The dusty disk around VV Ser

    Full text link
    We have carried out observations at millimeter and centimeter wavelengths towards VV Ser using the Plateau de Bure Interferometer and the Very Large Array. This allows us to compute the SED from near infrared to centimeter wavelengths. The modeling of the full SED has provided insight into the dust properties and a more accurate value of the disk mass. The mass of dust in the disk around VV Ser is found to be about 4 10^(-5) Msun, i.e. 400 times larger than previous estimates. Moreoever, the SED can only be accounted for assuming dust stratification in the vertical direction across the disk. The existence of small grains (0.25--1 micron) in the disk surface is required to explain the emission at near- and mid-infrared wavelengths. The fluxes measured at millimeter wavelengths imply that the dust grains in the midplane have grown up to very large sizes, at least to some centimeters.Comment: To appear in Ap

    The First CO Map of a Low Surface Brightness Galaxy

    Full text link
    Using the Owens Valley Radio Observatory Millimeter-Wavelength Array (OVRO) we have obtained the first CO map of a low surface brightness (LSB) galaxy. The studied galaxy, UGC 01922, was chosen for these observations because both of its previous CO detection with the IRAM 30m telescope and its classification as a Malin 1 `cousin' - an LSB galaxy with M_HI > 10^10 Msol. The OVRO map detected approximately 65% of the CO(1-0) flux found earlier with the single dish measurements, giving a detected gas mass equivalent to M_H2 = 1.1X10^9 Msol. The integrated gas peak lies at the center of the galaxy and coincides with both the optical and 1.4 GHz continuum emission peaks. The molecular gas extends well beyond the OVRO beam size (~4'' or 3 kpc), covering ~25% of the optical bulge. In all, perhaps the most remarkable aspect of this map is its unexceptional appearance. Given that it took over ten years to successfully detect molecular gas in any low surface brightness system, it is surprising that the appearance and distribution of UGC 01922's CO is similar to what would be expected for a high surface brightness galaxy in the same morphological class.Comment: 5 pages, including 3 figures and 3 tables. also available online at http://www.gb.nrao.edu/~koneil. Accepted by ApJ
    corecore