8 research outputs found

    A SU(2) recipe for mutually unbiased bases

    Full text link
    A simple recipe for generating a complete set of mutually unbiased bases in dimension (2j+1)**e, with 2j + 1 prime and e positive integer, is developed from a single matrix acting on a space of constant angular momentum j and defined in terms of the irreducible characters of the cyclic group C(2j+1). As two pending results, this matrix is used in the derivation of a polar decomposition of SU(2) and of a FFZ algebra.Comment: v2: abstract enlarged, a corollary added, acknowledgments added, one reference added, presentation improved; v3: two misprints correcte

    Bases for qudits from a nonstandard approach to SU(2)

    Full text link
    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR and the ICAS at Yerevan State University

    Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces

    Get PDF
    The recent proposal (M Planat and M Kibler, Preprint 0807.3650 [quantph]) of representing Clifford quantum gates in terms of unitary reflections is revisited. In this essay, the geometry of a Clifford group G is expressed as a BN-pair, i.e. a pair of subgroups B and N that generate G, is such that intersection H = B \cap N is normal in G, the group W = N/H is a Coxeter group and two extra axioms are satisfied by the double cosets acting on B. The BN-pair used in this decomposition relies on the swap and match gates already introduced for classically simulating quantum circuits (R Jozsa and A Miyake, Preprint arXiv:0804.4050 [quant-ph]). The two- and three-qubit steps are related to the configuration with 27 lines on a smooth cubic surface.Comment: 7 pages, version to appear in Journal of Physics A: Mathematical and Theoretical (fast track communications

    Variations on a theme of Heisenberg, Pauli and Weyl

    Full text link
    The parentage between Weyl pairs, generalized Pauli group and unitary group is investigated in detail. We start from an abstract definition of the Heisenberg-Weyl group on the field R and then switch to the discrete Heisenberg-Weyl group or generalized Pauli group on a finite ring Z_d. The main characteristics of the latter group, an abstract group of order d**3 noted P_d, are given (conjugacy classes and irreducible representation classes or equivalently Lie algebra of dimension d**3 associated with P_d). Leaving the abstract sector, a set of Weyl pairs in dimension d is derived from a polar decomposition of SU(2) closely connected to angular momentum theory. Then, a realization of the generalized Pauli group P_d and the construction of generalized Pauli matrices in dimension d are revisited in terms of Weyl pairs. Finally, the Lie algebra of the unitary group U(d) is obtained as a subalgebra of the Lie algebra associated with P_d. This leads to a development of the Lie algebra of U(d) in a basis consisting of d**2 generalized Pauli matrices. In the case where d is a power of a prime integer, the Lie algebra of SU(d) can be decomposed into d-1 Cartan subalgebras.Comment: Dedicated to the memory of Mosh\'e Flato on the occasion of the tenth anniversary of his deat

    A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements

    Full text link
    The basic methods of constructing the sets of mutually unbiased bases in the Hilbert space of an arbitrary finite dimension are discussed and an emerging link between them is outlined. It is shown that these methods employ a wide range of important mathematical concepts like, e.g., Fourier transforms, Galois fields and rings, finite and related projective geometries, and entanglement, to mention a few. Some applications of the theory to quantum information tasks are also mentioned.Comment: 20 pages, 1 figure to appear in Foundations of Physics, Nov. 2006 two more references adde

    Topological Color Codes and Two-Body Quantum Lattice Hamiltonians

    Get PDF
    Topological color codes are among the stabilizer codes with remarkable properties from quantum information perspective. In this paper we construct a four-valent lattice, the so called ruby lattice, governed by a 2-body Hamiltonian. In a particular regime of coupling constants, degenerate perturbation theory implies that the low energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. The gauge symmetry Z2Ă—Z2\mathbf{Z}_{2}\times\mathbf{Z}_{2} of color code could already be realized by identifying three distinct plaquette operators on the lattice. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other giving rise to exact topological degeneracy of the model. Connection to 2-colexes can be established at the non-perturbative level. The particular structure of the 2-body Hamiltonian provides a fruitful interpretation in terms of mapping to bosons coupled to effective spins. We show that high energy excitations of the model have fermionic statistics. They form three families of high energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. Also, we use Jordan-Wigner transformation in order to test the integrability of the model via introducing of Majorana fermions. The four-valent structure of the lattice prevents to reduce the fermionized Hamiltonian into a quadratic form due to interacting gauge fields. We also propose another construction for 2-body Hamiltonian based on the connection between color codes and cluster states. We discuss this latter approach along the construction based on the ruby lattice.Comment: 56 pages, 16 figures, published version
    corecore