28 research outputs found

    Non-coordinating anions assemble cyanine amphiphiles into ultra-small fluorescent nanoparticles

    Get PDF
    A non-coordinating anion, fluorinated tetraphenylborate, assembles specially designed cationic cyanine amphiphiles into 7–8 nm fluorescent nanoparticles that are >40-fold brighter than a single cyanine dye. This kind of anion, combining hydrophobic and electrostatic forces in aqueous media, constitutes promising building blocks in the self-assembly of functional nanomaterials

    Characterization of Coupled Ground State and Excited State Equilibria by Fluorescence Spectral Deconvolution

    Get PDF
    Fluorescence probes with multiparametric response based on the relative variation in the intensities of several emission bands are of great general utility. An accurate interpretation of the system requires the determination of the number, positions and intensities of the spectral components. We have developed a new algorithm for spectral deconvolution that is applicable to fluorescence probes exhibiting a two-state ground-state equilibrium and a two-state excited-state reaction. Three distinct fluorescence emission bands are resolved, with a distribution of intensities that is excitation-wavelength-dependent. The deconvolution of the spectrum into individual components is based on their representation as asymmetric Siano-Metzler log-normal functions. The application of the algorithm to the solvation response of a 3-hydroxychromone (3HC) derivative that exhibits an H-bonding-dependent excited-state intramolecular proton transfer (ESIPT) reaction allowed the separation of the spectral signatures characteristic of polarity and hydrogen bonding. This example demonstrates the ability of the method to characterize two potentially uncorrelated parameters characterizing dye environment and interactions

    Org Biomol Chem

    Get PDF
    A new fluorescent label N-[4'-(dimethylamino)-3-hydroxyflavone-7-yl]-N-methyl-beta-alanine () was synthesized. Due to two electron donor groups at the opposite ends of the chromophore, an excited state intramolecular proton transfer (ESIPT) resulting in a dual emission was observed even in highly polar media and its fluorescence quantum yield was found to be remarkably high in a broad range of solvents including water. As a consequence, this label exhibits a remarkable sensitivity to the hydration of its environment, which is observed as a color switch between the emission of the ESIPT product (T* form) and that of the normal N* form. The label was coupled to the N-terminus of penetratin, a cell penetrating peptide, in order to study its interactions with lipid membranes and internalization inside the cells. As expected, the binding of penetratin to lipid membranes resulted in a dramatic switch in the relative intensity of its two emission bands as compared to its emission in buffer. Our studies with different lipid compositions confirmed the preference of penetratin to lipid membranes of the liquid disordered phase. After incubation of low concentrations of labeled penetratin with living cells, ratiometric imaging revealed, in addition to membrane-bound species, a significant fraction of free peptide in cytosol showing the characteristic emission from aqueous medium. At higher concentrations of penetratin, mainly peptides bound to cell membrane structures were observed. These observations confirmed the ability of penetratin to enter the cytosol by direct translocation through the cell plasma membrane, in addition to the classical entry by endocytosis. The present probe constitutes thus a powerful tool to study the interaction of peptides with living cells and their internalization mechanisms

    Dual-fluorescence L-amino acid reports insertion and orientation of melittin peptide in cell membranes.

    No full text
    Monitoring insertion and orientation of peptides in situ on cell membranes remains a challenge. To this end, we synthesized an l-amino acid (AFaa) containing a dual-fluorescence dye of the 3-hydroxyflavone family, as a side chain. In contrast to other labeling approaches using a flexible linker, the AFaa fluorophore, introduced by solid phase synthesis into desired position of a peptide, is attached closely to its backbone with well-defined orientation, and, therefore, could reflect its localization in the membrane. This concept was validated by replacing the leucine-9 (L9) and tryptophan-19 (W19) residues by AFaa in melittin, a well-studied membrane-active peptide. Due to high sensitivity of AFaa dual emission to the environment polarity, we detected a much deeper insertion of L9 peptide position into the bilayer, compared to the W19 position. Moreover, using fluorescence microscopy with a polarized light excitation, we found different orientation of AFaa at L9 and W19 positions of melittin in the bilayers of giant vesicles and cellular membranes. These results suggested that in the natural membranes, similarly to the model lipid bilayers, melittin is preferentially oriented parallel to the membrane surface. The developed amino acid and the proposed methodology will be of interest to study other membrane peptides

    Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo.

    No full text
    We report the preparation and antiparasitic activity in vitro and in vivo of a series of isoflavone derivatives related to genistein. These analogues retain the 5,7-dihydroxyisoflavone core of genistein: direct genistein analogues (2-H isoflavones), 2-carboethoxy isoflavones, and the precursor deoxybenzoins were all evaluated. Excellent in vitro activity against Cryptosporidium parvum was observed for both classes of isoflavones in cell cultures, and the lead compound 19, RM6427, shows high in vivo efficacy against an experimental infection
    corecore