18 research outputs found

    Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetically engineered mouse models of mammary gland cancer enable the <it>in vivo </it>study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue.</p> <p>Methods</p> <p>We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging.</p> <p>Results</p> <p>In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice.</p> <p>Conclusion</p> <p>In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary.</p

    First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope

    No full text
    International audienceThe characterization of objects that have best preserved the mineralogical and molecular phases formed in the earliest stages of the Solar System evolution is key to understanding the processes that led to the formation of the planets in their diversity. The Hayabusa2 mission of the Japan Aerospace Exploration Agency has returned for the first time samples collected at the surface of a C-type asteroid, Ryugu1,2. They are now preserved at the Extraterrestrial Samples Curation Center of the Japan Aerospace Exploration Agency at the Institute of Space and Astronautical Science in Sagamihara, Japan, where they are submitted to a first round of purely non-destructive analyses. The MicrOmega hyperspectral microscope developed at the Institut d'Astrophysique Spatiale (Orsay, France), which operates in the near-infrared range (0.99-3.65 µm), is performing their mineralogical and molecular characterization down to the scale of a few tens of micrometres. Strong features at 2.7 µm (indicating their OH-rich content) and at 3.4 µm (diagnostic of the presence of organics) dominate at a global scale, but key distinctive signatures have been identified at a submillimetre scale. In particular, carbonates (a fraction of them enriched in iron) as well as NH-rich compounds have been detected. The occurrence of volatile-rich species, likely originating from the outer Solar System, would support Ryugu having preserved both pristine material and altered phases, which are now available for refined laboratory analyses with the potential to draw new insights into the formation and evolution paths of planetary bodies in our Solar System
    corecore