9 research outputs found

    Scaling ozone responses of forest trees to the ecosystem level in a changing climate

    Full text link
    Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO 2 ) and ozone (O 3 ), alone and in combination, from establishment onward. We examine how O 3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO 2 conditions. We provide evidence of adverse effects of O 3 , with or without co-occurring elevated CO 2 , that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen ( Populus tremuloides Michx . ), paper birch ( Betula papyrifera Marsh), and sugar maple ( Acer saccharum Marsh). Interestingly, the negative effect of O 3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O 3 effect was most noticeable on paper birch trees growing under elevated CO 2 . Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O 3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O 3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72464/1/j.1365-3040.2005.01362.x.pd

    Pulpwood production in the North-Central Region, 1995

    No full text
    ulpwood constitutes more than half the industrial timber products harvested annually in the Lake States (Michigan, Minnesota, and Wisconsin) and is an important product in the Central States (Illinois, Indiana, Iowa, and Missouri) and the Plains States (Kansas, Nebraska, North Dakota, and South Dakota). Current detailed information about pulpwood production2 is necessary for intelligent plan- ning and decision making in wood procure- ment, forest resource management, forest industry development, and scientific studies. Since 1979, we have included logs, bolts, and wood residue used in manufacturing flake board, wafer board, oriented strand board, and medium density fiberboard in this annual report. Engineered lumber was included in this report in 1992. Together, these products are called particleboards, and all mills manu- facturing these boards will be called particle- board mills in this paper. Wood used at particleboard mills is identical or nearly identical to wood used at pulp mills; therefore, including this wood in our study provides a more accurate estimate of demand for pulp- wood-like material

    Dietary supplementation with a microencapsulated blend of organic acids and botanicals alters the kinome in the ileum and jejunum of Gallus gallus

    No full text
    The use of natural products as feed additives in the poultry industry is increasing; however, most studies focus on performance and growth with little regard for determining mechanism. Our laboratory designed a chicken (Gallus gallus)-specific immunometabolic kinome peptide array. Using this tool to examine the active enzymes responsible for phosphorylation events (kinases) provides important information on host and cellular functions. The objective of this project was to determine if feeding a microencapsulated product comprised of a blend of organic acids and botanicals (AviPlus\uaeP) impacts the intestinal kinome of broiler chickens (Gallus gallus). Day-of-hatch chicks were provided 0 or 500g/MT of the additive and jejunal and ileal segments collected for kinome analysis to determine the mode-of-action of the additive. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed by uploading the statistically significant peptides to the Search Tool for the Retrieval of Interacting Genes database. As a whole, GO and KEGG analysis showed similar activities in the ileum and jejunum. However, there were a small number of KEGG pathways that were only activated in either the ileum or jejunum, but not both. Analysis of the adipocytokine and PI3K-AKT signaling pathways showed differences between ileal and jejunal activity that were controlled, in part, by AKT3. Additionally, cytokine/chemokine evaluation showed the ileum had higher IL1\u3b2, IL6, IL10, TNF\u3b1, IFN\u3b3, CXCL8, and CCL4 mRNA expression levels (P<0.05). As a whole, the data showed the addition of microencapsulated organic acids and botanicals to a broiler diet activated many of the same signaling pathways in the ileum and jejunum; however, distinctions were observed. Taken together, the findings of this study begin to define the mode-of-action that microencapsulated organic acids and botanicals have on two important intestinal segments responsible for nutrient digestion and absorption in chickens
    corecore