964 research outputs found
Resting-state connectivity and functional specialization in human medial parieto-occipital cortex
According to recent models of visuo-spatial processing, the medial parieto-occipital cortex is a crucial node of the dorsal visual stream. Evidence from neurophysiological studies in monkeys has indicated that the parieto-occipital sulcus (POS) contains three functionally and cytoarchitectonically distinct areas: the visual area V6 in the fundus of the POS, and the visuo-motor areas V6Av and V6Ad in a progressively dorsal and anterior location with respect to V6. Besides different topographical organization, cytoarchitectonics, and functional properties, these three monkey areas can also be distinguished based on their patterns of cortico-cortical connections. Thanks to wide-field retinotopic mapping, areas V6 and V6Av have been also mapped in the human brain. Here, using a combined approach of resting-state functional connectivity and task-evoked activity by fMRI, we identified a new region in the anterior POS showing a pattern of functional properties and cortical connections that suggests a homology with the monkey area V6Ad. In addition, we observed distinct patterns of cortical connections associated with the human V6 and V6Av which are remarkably consistent with those showed by the anatomical tracing studies in the corresponding monkey areas. Consistent with recent models on visuo-spatial processing, our findings demonstrate a gradient of functional specialization and cortical connections within the human POS, with more posterior regions primarily dedicated to the analysis of visual attributes useful for spatial navigation and more anterior regions primarily dedicated to analyses of spatial information relevant for goal-directed action
Spectrum: Fast density-aware spectral clustering for single and multi-omic data
Abstract Clustering of single or multi-omic data is key to developing personalised medicine and identifying new cell types. We present Spectrum, a fast spectral clustering method for single and multi-omic expression data. Spectrum is flexible and performs well on single-cell RNA-seq data. The method uses a new density-aware kernel that adapts to data scale and density. It uses a tensor product graph data integration and diffusion technique to reveal underlying structures and reduce noise. We developed a powerful method of eigenvector analysis to determine the number of clusters. Benchmarking Spectrum on 21 datasets demonstrated improvements in runtime and performance relative to other state-of-the-art methods. Contact: [email protected]
A common neural substrate for processing scenes and egomotion-compatible visual motion
Neuroimaging studies have revealed two separate classes of category-selective regions specialized in optic flow (egomotion-compatible) processing and in scene/place perception. Despite the importance of both optic flow and scene/place recognition to estimate changes in position and orientation within the environment during self-motion, the possible functional link between egomotion- and scene-selective regions has not yet been established. Here we reanalyzed functional magnetic resonance images from a large sample of participants performing two well-known “localizer” fMRI experiments, consisting in passive viewing of navigationally relevant stimuli such as buildings and places (scene/place stimulus) and coherently moving fields of dots simulating the visual stimulation during self-motion (flow fields). After interrogating the egomotion-selective areas with respect to the scene/place stimulus and the scene-selective areas with respect to flow fields, we found that the egomotion-selective areas V6+ and pIPS/V3A responded bilaterally more to scenes/places compared to faces, and all the scene-selective areas (parahippocampal place area or PPA, retrosplenial complex or RSC, and occipital place area or OPA) responded more to egomotion-compatible optic flow compared to random motion. The conjunction analysis between scene/place and flow field stimuli revealed that the most important focus of common activation was found in the dorsolateral parieto-occipital cortex, spanning the scene-selective OPA and the egomotion-selective pIPS/V3A. Individual inspection of the relative locations of these two regions revealed a partial overlap and a similar response profile to an independent low-level visual motion stimulus, suggesting that OPA and pIPS/V3A may be part of a unique motion-selective complex specialized in encoding both egomotion- and scene-relevant information, likely for the control of navigation in a structured environment
Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer.
Ectopic (or tertiary) lymphoid structures (ELS) are organized aggregates of lymphocytes resembling secondary lymphoid organs and developing in chronically inflamed nonlymphoid tissues during persistent infections, graft rejection, autoimmune conditions, and cancer. In this review, we will first depict the mechanisms regulating ELS generation, focusing on the role played by lymphoid chemokines. We will then characterize ELS forming in target organs during autoimmune conditions, here exemplified by rheumatoid arthritis, and cancer, highlighting the relevance of the tissue-specific factors. Finally, we will discuss the clinical significance of ELS and the therapeutic potential of their inhibition and/or enhancement depending on the disease considered.MRC Grant Number 36661 awarded to Costantino Pitzalis; MRC Grant Number MR/K015346/1 awarded to Costantino Pitzalis; ARUK Grant Number 20022 awarded to Costantino Pitzalis
Follicular dendritic cells in health and disease
Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerise Ags and present them polyvalently to B cells in periodically arranged arrays that extensively crosslink the B cell receptors for Ag (BCRs). FDC-Fc-gamma-RIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6 and -C4bBP, are essential for the induction of the germinal centre (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses
- …