5,022 research outputs found

    Constrained Dynamics of Universally Coupled Massive Spin 2-spin 0 Gravities

    Full text link
    The 2-parameter family of massive variants of Einstein's gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200

    Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems

    Full text link
    The theoretical framework for higher-order correlation functions involving multiple times and multiple points in a classical, many-body system developed by Van Zon and Schofield [Phys. Rev. E 65, 011106 (2002)] is extended here to include tagged particle densities. Such densities have found an intriguing application as proposed measures of dynamical heterogeneities in structural glasses. The theoretical formalism is based upon projection operator techniques which are used to isolate the slow time evolution of dynamical variables by expanding the slowly-evolving component of arbitrary variables in an infinite basis composed of the products of slow variables of the system. The resulting formally exact mode-coupling expressions for multiple-point and multiple-time correlation functions are made tractable by applying the so-called N-ordering method. This theory is used to derive for moderate densities the leading mode coupling expressions for indicators of relaxation type and domain relaxation, which use dynamical filters that lead to multiple-time correlations of a tagged particle density. The mode coupling expressions for higher order correlation functions are also succesfully tested against simulations of a hard sphere fluid at relatively low density.Comment: 15 pages, 2 figure

    Universally Coupled Massive Gravity

    Full text link
    We derive Einstein's equations from a linear theory in flat space-time using free-field gauge invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. We adapt these results to yield universally coupled massive variants of Einstein's equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The Freund-Maheshwari-Schonberg theory is therefore not the unique universally coupled massive generalization of Einstein's theory, although it is privileged in some respects. The theories we derive are a subset of those found by Ogievetsky and Polubarinov by other means. The question of positive energy, which continues to be discussed, might be addressed numerically in spherical symmetry. We briefly comment on the issue of causality with two observable metrics and the need for gauge freedom and address some criticisms by Padmanabhan of field derivations of Einstein-like equations along the way.Comment: Introduction notes resemblance between Einstein's discovery process and later field/spin 2 project; matches journal versio

    Radiation distributions in TCV

    Get PDF
    Total radiative powers measured by foil bolometer and AXUV camera systems are compared to SOLPS5 simulations in low and high density deuterium and helium diverted discharges on the TCV tokamak. For low density the match between simulation and measurements is satisfactory, but at high density strongly radiating regions outside the SOLPS5 simulation grid are seen in measurements and this may indicate the presence of enhanced convective particle transport in the low field side midplane region. The chord coverage of the foil bolometer system does not, however, allow detailed resolution in this region. The comparison of foil and AXUV data also demonstrates that ageing of the AXUV diodes under plasma irradiation combined with the unevenness of the diode spectral response, strongly limits their application for total radiative power measurements. (c) 2007 Elsevier B.V. All rights reserved

    The stellar populations of spiral disks.II Measuring and modeling the radial distribution of absorption spectral indices

    Get PDF
    The radial distributions of the Mg2 and Fe5270 Lick spectral indices have been measured to large radial distances on the disks of NGC 4303 and NGC 4535 using an imaging technique based on interference filters. These data, added to those of NGC 4321 previously published in Paper I of this series are used to constraint chemical (multiphase) evolutionary models for these galaxies. Because the integrated light of a stellar disk is a time average over the history of the galaxy weighted by the star formation rate, these constraints complement the information on chemical gradients provided by the study of HII regions which, by themselves, can only provide the alpha-elements abundance accumulate over the life of the galaxy. The agreement between the observations and the model predictions shown here lends confidence to the models which are then used to describe the time evolution of galaxy parameters such as star formation rates, chemical gradients, and gradients in the mean age of the stellar population.Comment: to be published in Astrophysical Journa
    • …
    corecore