316 research outputs found

    Experimental investigations on the fatigue resistance of automatically welded tubular X-joints for jacket support structures

    Get PDF
    The development within the offshore wind sector towards more powerful turbines combined with increasing water depth for new wind parks is challenging both the designer as well as the manufacturer of bottom fixed support structures. Besides XL-monopiles, the market developed an innovative and economic jacket support structure which is based on automatically manufactured tubular joints combined with standardized pipes. Besides the improvements for a serial manufacturing process the automatically welded tubular joints show a great potential in terms of fatigue resistance e.g. due to a smooth weld geometry without sharp notches. However, these benefits are not considered yet within the fatigue design process of automatically manufactured jacket substructures according to current standards due to the lack of suitable S-N curves. Therefore, 32 axial fatigue tests on single and double-sided automatically welded tubular X-joints have been performed to determine a new hot spot stress related S-N curve. Based on these constant amplitude fatigue tests a new S-N curve equal to a FAT 126 curve was computed which implicitly includes the benefits of the automatically welding procedure. © Published under licence by IOP Publishing Ltd

    Stimulation of specific GTPase activity by vasopressin in isolated membranes from cultured rat hepatocytes

    Get PDF
    AbstractMembranes were isolated by isotonic homogenization and differential centrifugation from rat hepatocytes cultured overnight. The specific GTPase activity of the membranes was 1–1.3 pmol Îł-labelled GTP hydrolysed/mg protein per min in the presence of 1.2 mM Na+, 2 mM EGTA, 1 mM ATP and 0.2 mM 5-adenylyl imidodiphosphate. Under these conditions there was a stimulation of specific GTPase activity of no more than 20% by 11–115 nM vasopressin. No effect of vasopressin was seen in the presence of 1.7 ÎŒM free Ca2+ or 100 mM Na+. The findings indicate that vasopressin is able to influence GTPase activity as well as accelerate phosphoinositide breakdown in rat hepatocytes

    Experimental investigations on the fatigue resistance of automatically welded tubular X-joints for jacket support structures

    Get PDF
    The development within the offshore wind sector towards more powerful turbines combined with increasing water depth for new wind parks is challenging both the designer as well as the manufacturer of bottom fixed support structures. Besides XL-monopiles, the market developed an innovative and economic jacket support structure which is based on automatically manufactured tubular joints combined with standardized pipes. Besides the improvements for a serial manufacturing process the automatically welded tubular joints show a great potential in terms of fatigue resistance e.g. due to a smooth weld geometry without sharp notches. However, these benefits are not considered yet within the fatigue design process of automatically manufactured jacket substructures according to current standards due to the lack of suitable S-N curves. Therefore, 32 axial fatigue tests on single and double-sided automatically welded tubular X-joints have been performed to determine a new hot spot stress related S-N curve. Based on these constant amplitude fatigue tests a new S-N curve equal to a FAT 126 curve was computed which implicitly includes the benefits of the automatically welding procedure

    On the S-wave piD-scattering length in the relativistic field theory model of the deuteron

    Full text link
    The S-wave scattering length of the strong pion-deuteron (pi D) scattering is calculated in the relativistic field theory model of the deuteron suggested in [1,2].The theoretical result agrees well with the experimental data. The important role of the Delta-resonance contribution to the elastic pi D-scattering is confirmed.Comment: 7 pages, no figures, accepted for publication in Z. Phys.

    Relativistic quantum chemistry on quantum computers

    Get PDF
    Last years witnessed a remarkable interest in application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, even first proof-of-principle experimental realizations have been reported. However, so far only the non-relativistic regime (i.e. Schroedinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. In this letter we present the first quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with 3 qubits and 9 or 10 CNOTs, which implement a proof-of-principle relativistic quantum chemical calculation for this molecule and might be suitable for an experimental realization
    • 

    corecore