1,977 research outputs found

    Cyclical Quantum Memory for Photonic Qubits

    Get PDF
    We have performed a proof-of-principle experiment in which qubits encoded in the polarization states of single-photons from a parametric down-conversion source were coherently stored and read-out from a quantum memory device. The memory device utilized a simple free-space storage loop, providing a cyclical read-out that could be synchronized with the cycle time of a quantum computer. The coherence of the photonic qubits was maintained during switching operations by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure

    Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers

    Full text link
    We present a theoretical and experimental investigation of the emission characteristics and the flux of photon pairs generated by spontaneous parametric downconversion in quasi-phase matched bulk crystals for the use in quantum communication sources. We show that, by careful design, one can attain well defined modes close to the fundamental mode of optical fibers and obtain high coupling efficiencies also for bulk crystals, these being more easily aligned than crystal waveguides. We distinguish between singles coupling, conditional coincidence, and pair coupling, and show how each of these parameters can be maximized by varying the focusing of the pump mode and the fiber-matched modes using standard optical elements. Specifically we analyze a periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs at 810 nm and 1550 nm. Numerical calculations lead to coupling efficiencies above 94% at optimal focusing, which is found by the geometrical relation L/z_R to be ~ 1 to 2 for the pump mode and ~ 2 to 3 for the fiber-modes, where L is the crystal length and z_R is the Rayleigh-range of the mode-profile. These results are independent on L. By showing that the single-mode bandwidth decreases as 1/L, we can therefore design the source to produce and couple narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means both less chromatic dispersion for long propagation distances in fibers, and that telecom Bragg gratings can be utilized to compensate for broadened photon packets--a vital problem for time-multiplexed qubits. Longer crystals also yield an increase in fiber photon flux proportional to sqrt{L}, and so, assuming correct focusing, we can only see advantages using long crystals.Comment: 19 pages, 15 figures, ReVTeX4, minor revisio

    Photon number resolution using a time-multiplexed single-photon detector

    Full text link
    Photon number resolving detectors are needed for a variety of applications including linear-optics quantum computing. Here we describe the use of time-multiplexing techniques that allows ordinary single photon detectors, such as silicon avalanche photodiodes, to be used as photon number-resolving detectors. The ability of such a detector to correctly measure the number of photons for an incident number state is analyzed. The predicted results for an incident coherent state are found to be in good agreement with the results of a proof-of-principle experimental demonstration.Comment: REVTeX4, 6 pages, 8 eps figures, v2: minor changes, v3: changes in response to referee report, appendix added, 1 reference adde

    Microcavities Using Holey Fibers

    Full text link
    Vacuum compatible microcavities consisting of microstructured holey fibers and separate end mirrors have been constructed and tested. These devices exhibit excellent transverse mode confinement and the ability to control the percentage of power guided outside of the fiber core. As a result, these devices may be a useful tool for enhancing the interaction between light and an atomic medium

    Heralded generation of entangled photon pairs

    Full text link
    Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused in overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric down-conversion. We utilize the down-conversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing

    Comparison of LOQC C-sign gates with ancilla inefficiency and an improvement to functionality under these conditions

    Get PDF
    We compare three proposals for non-deterministic C-sign gates implemented using linear optics and conditional measurements with non-ideal ancilla mode production and detection. The simplified KLM gate [Ralph et al, Phys.Rev.A {\bf 65}, 012314 (2001)] appears to be the most resilient under these conditions. We also find that the operation of this gate can be improved by adjusting the beamsplitter ratios to compensate to some extent for the effects of the imperfect ancilla.Comment: to appear in PR

    All-Optical Switching Demonstration using Two-Photon Absorption and the Classical Zeno Effect

    Full text link
    Low-contrast all-optical Zeno switching has been demonstrated in a silicon nitride microdisk resonator coupled to a hot atomic vapor. The device is based on the suppression of the field build-up within a microcavity due to non-degenerate two-photon absorption. This experiment used one beam in a resonator and one in free-space due to limitations related to device physics. These results suggest that a similar scheme with both beams resonant in the cavity would correspond to input power levels near 20 nW.Comment: 4 pages, 5 figure
    corecore