4,258 research outputs found

    Aerodynamic characteristics at Mach numbers from 0.33 to 1.20 of a wing-body design concept for a hypersonic research airplane

    Get PDF
    An experimental investigation of the static aerodynamic characteristics of a model of one design concept for the proposed National Hypersonic Flight Research Facility was conducted in the Langley 8 foot transonic pressure tunnel. The experiment consisted of configuration buildup from the basic body by adding a wing, center vertical tail, and a three module or six module scramjet engine. The freestream test Mach numbers were 0.33, 0.80, 0.90, 0.95, 0.98, 1.10, and 1.20 at Reynolds numbers per meter ranging from 4.8 x 1 million to 10.4 x 1 million. The test angle of attack range was approximately -4 deg to 22 deg at constant angles of sideslip of 0 deg and 4 deg; the angle of sideslip ranged from about -6 deg to 6 deg at constant angles of attack of 0 deg and 17 deg. The elevons were deflected 0 deg, -10 deg, and -20 deg with rudder deflections of 0 deg and 15.6 deg

    Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle

    Get PDF
    An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients

    Experimental and theoretical aerodynamic characteristics of two hypersonic cruise aircraft concepts at Mach numbers of 2.96, 3.96, and 4.63

    Get PDF
    The longitudinal and lateral directional aerodynamic characteristics for two Mach 5 cruise aircraft concepts were determined for test Mach numbers of 2.96, 3.96, and 4.63. Estimates from hypersonic impact theory and first order supersonic linearized theory were compared with data to indicate the usefulness of these methods. The method which applied tangent cone empirical theory to the body and tangent wedge theory to the wings and to the horizontal and vertical tails provided the best estimates. The tangent cone empirical theory applied to all components showed poor agreement with data, and the linear theory estimates were accurate only for lift coefficient and drag coefficient at low angles of attack
    corecore