16 research outputs found

    Theoretical Risk of Genetic Reassortment Should Not Impede Development of Live, Attenuated Rift Valley Fever (RVF) Vaccines Commentary on the Draft WHO RVF Target Product Profile

    Get PDF
    In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment

    Um mundo novo no Atlùntico: marinheiros e ritos de passagem na linha do equador, séculos XV-XX

    Full text link

    Mpox (Monkeypox) in Pregnancy: Viral Clade Differences and Their Associations with Varying Obstetrical and Fetal Outcomes

    No full text
    In African countries where mpox (monkeypox) is endemic, infection is caused by two genetically related clades—Clade I (formerly Congo Basin), and Clade IIa (formerly West Africa), both of which are potentially life-threatening infections. Prior to the 2022–2023 global outbreak, mpox infections among pregnant women caused by Clade I were reported to have a 75% perinatal case fatality rate in the Democratic Republic of Congo, including the only documented case of placental infection and stillbirth from the Congenital Mpox Syndrome, and the Clade IIa mpox infection was associated with stillbirths in Nigeria. The 2022–2023 global mpox outbreak, caused by a genetically distinct strain, Clade IIb, has focused attention on the effects of mpox on pregnant women and fetal outcomes. There have been at least 58 cases of mpox infection occurring in pregnant women during the 2022–2023 outbreak. No confirmed cases of adverse perinatal outcome, including stillbirth, have been reported. The absence of perinatal morbidity and mortality from Clade IIb corresponds to the overall case fatality rate among non-pregnant women of <0.1%, as this clade has been demonstrated to produce a less-severe disease than the mpox Clade I or IIa variants. Thus, there are apparently important differences between mpox clades affecting pregnant women and perinatal outcomes

    Detection of Antibodies to Squalene III. Naturally Occurring Antibodies to Squalene in Humans and Mice

    Get PDF
    An ELISA-based assay is described for the measurement of antibodies to squalene (SQE) in human serum and plasma. The assay was adapted from the previously described assay for murine antibodies to SQE (J. Immunol. Methods 267 (2002) 119). Like the murine SQE antibody assay, the human antibody assay used sterile cell culture 96-well plates coated with SQE (20 nmol/well). Phosphate-buffered saline (PBS)–0.5% casein was used as both a blocking agent and dilution buffer. The assay has a high through-put capacity and is reproducible and quantitative. This assay was used to evaluate samples from three different human cohorts. The first cohort was retired employees of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID alumni). The mean age was 68 (N = 40; range 58–82). Most were vaccinated with the U.S. licensed anthrax vaccine (AVA) and most had received several other vaccines through a USAMRIID special immunization program. The second cohort was of similar age (N = 372; mean age 67; range 54–97) from the normal population of Frederick, MD and were not vaccinated with AVA. The third cohort (N = 299) was from Camp Memorial Blood Center, United States Army Medical Department Activities, Fort Knox, KY. (No additional volunteer information is available.) Using this new ELISA method, antibodies to SQE were detected in all three of the cohorts. IgG antibodies to SQE were detected in 7.5% and 15.1% of the samples from the USAMRIID alumni and Frederick cohorts, respectively. These differences were not significantly different (χ(1)2 = 1.69, p = 0.19). In contrast, no IgG antibodies to SQE were detected in the Fort Knox cohort which is significantly different than the Frederick cohort (χ(1)2 = 49.25, p \u3c 0.0001). IgM antibodies to SQE were detected in 37.5% and 32.3% of the samples from the USAMRIID and Frederick cohorts, respectively, but there was no significant difference between the cohorts

    Human transcriptome response to immunization with live-attenuated Venezuelan equine encephalitis virus vaccine (TC-83): Analysis of whole blood

    No full text
    Venezuelan equine encephalitis virus (VEEV) is an important human and animal alphavirus pathogen transmitted by mosquitoes. The virus is endemic in Central and South America, but has also caused equine outbreaks in southwestern areas of the United States. In an effort to better understand the molecular mechanisms of the development of immunity to this important pathogen, we performed transcriptional analysis from whole, unfractionated human blood of patients who had been immunized with the live-attenuated vaccine strain of VEEV, TC-83. We compared changes in the transcriptome between naĂŻve individuals who were mock vaccinated with saline to responses of individuals who received TC-83. Significant transcriptional changes were noted at days 2, 7, and 14 following vaccination. The top canonical pathways revealed at early and intermediate time points (days 2 and 7) included the involvement of the classic interferon response, interferon-response factors, activation of pattern recognition receptors, and engagement of the inflammasome. By day 14, the top canonical pathways included oxidative phosphorylation, the protein ubiquitination pathway, natural killer cell signaling, and B-cell development. Biomarkers were identified that differentiate between vaccinees and control subjects, at early, intermediate, and late stages of the development of immunity as well as markers which were common to all 3 stages following vaccination but distinct from the sham-vaccinated control subjects. The study represents a novel examination of molecular processes that lead to the development of immunity against VEEV in humans and which may be of value as diagnostic targets, to enhance modern vaccine design, or molecular correlates of protection

    Maternal Autogenous Inactivated Virus Vaccination Boosts Immunity to PRRSV in Piglets

    No full text
    Maternal-derived immunity is a critical component for the survival and success of offspring in pigs to protect from circulating pathogens such as Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2). The purpose of this study is to investigate the transfer of anti-PRRSV immunity to piglets from gilts that received modified-live virus (MLV) alone (treatment (TRT) 0), or in combination with one of two autogenous inactivated vaccines (AIVs, TRT 1+2). Piglets from these gilts were challenged with the autogenous PRRSV-2 strain at two weeks of age and their adaptive immune response (IR) was evaluated until 4 weeks post inoculation (wpi). The systemic humoral and cellular IR was analyzed in the pre-farrow gilts, and in piglets, pre-inoculation, and at 2 and 4 wpi. Both AIVs partially protected the piglets with reduced lung pathology and increased weight gain; TRT 1 also lowered piglet viremia, best explained by the AIV-induced production of neutralizing antibodies in gilts and their transfer to the piglets. In piglets, pre-inoculation, the main systemic IFN-Îł producers were CD21α+ B cells. From 0 to 4 wpi, the role of these B cells declined and CD4 T cells became the primary systemic IFN-Îł producers. In the lungs, CD8 T cells were the primary and CD4 T cells were the secondary IFN-Îł producers, including a novel subset of porcine CD8α−CCR7− CD4 T cells, potentially terminally differentiated CD4 TEMRA cells. In summary, this study demonstrates that maternal AIV vaccination can improve protection of pre-weaning piglets against PRRSV-2; it shows the importance of transferring neutralizing antibodies to piglets, and it introduces two novel immune cell subsets in pigs—IFN-Îł producing CD21α+ B cells and CD8α−CCR7− CD4 T cells

    The O-Ag Antibody Response to Francisella Is Distinct in Rodents and Higher Animals and Can Serve as a Correlate of Protection

    No full text
    Identifying correlates of protection (COPs) for vaccines against lethal human (Hu) pathogens, such as Francisella tularensis (Ft), is problematic, as clinical trials are currently untenable and the relevance of various animal models can be controversial. Previously, Hu trials with the live vaccine strain (LVS) demonstrated ~80% vaccine efficacy against low dose (~50 CFU) challenge; however, protection deteriorated with higher challenge doses (~2000 CFU of SchuS4) and no COPs were established. Here, we describe our efforts to develop clinically relevant, humoral COPs applicable to high-dose, aerosol challenge with S4. First, our serosurvey of LVS-vaccinated Hu and animals revealed that rabbits (Rbs), but not rodents, recapitulate the Hu O-Ag dependent Ab response to Ft. Next, we assayed Rbs immunized with distinct S4-based vaccine candidates (S4&Delta;clpB, S4&Delta;guaBA, and S4&Delta;aroD) and found that, across multiple vaccines, the %O-Ag dep Ab trended with vaccine efficacy. Among S4&Delta;guaBA-vaccinated Rbs, the %O-Ag dep Ab in pre-challenge plasma was significantly higher in survivors than in non-survivors; a cut-off of &gt;70% O-Ag dep Ab predicted survival with high sensitivity and specificity. Finally, we found this COP in 80% of LVS-vaccinated Hu plasma samples as expected for a vaccine with 80% Hu efficacy. Collectively, the %O-Ag dep Ab response is a bona fide COP for S4&Delta;guaBA-vaccinated Rb and holds significant promise for guiding vaccine trials with higher animals

    Theoretical risk of genetic reassortment should not impede development of live, attenuated Rift Valley fever (RVF) vaccines commentary on the draft WHO RVF Target Product Profile

    No full text
    In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment
    corecore