42 research outputs found
Space/time noncommutative field theories and causality
As argued previously, amplitudes of quantum field theories on noncommutative
space and time cannot be computed using naive path integral Feynman rules. One
of the proposals is to use the Gell-Mann--Low formula with time-ordering
applied before performing the integrations. We point out that the previously
given prescription should rather be regarded as an interaction point
time-ordering. Causality is explicitly violated inside the region of
interaction. It is nevertheless a consistent procedure, which seems to be
related to the interaction picture of quantum mechanics. In this framework we
compute the one-loop self-energy for a space/time noncommutative \phi^4 theory.
Although in all intermediate steps only three-momenta play a role, the final
result is manifestly Lorentz covariant and agrees with the naive calculation.
Deriving the Feynman rules for general graphs, we show, however, that such a
picture holds for tadpole lines only.Comment: 16 pages, LaTeX, uses feynmf macros, one reference added; ooops,
version 2 was an older one
Neutron Interferometry constrains dark energy chameleon fields
We present phase shift measurements for neutron matter waves in vacuum and in
low pressure Helium using a method originally developed for neutron scattering
length measurements in neutron interferometry. We search for phase shifts
associated with a coupling to scalar fields. We set stringent limits for a
scalar chameleon field, a prominent quintessence dark energy candidate. We find
that the coupling constant is less than 1.9 ~for at
95\% confidence level, where is an input parameter of the self--interaction
of the chameleon field inversely proportional to .Comment: 7 pages, 4 figure
On the influence of the magnetic field of the GSI experimental storage ring on the time-modulation of the EC-decay rates of the H-like mother ions
We investigate the influence of the magnetic field of the
Experimental storage ring (ESR) at GSI on the periodic time-dependence of the
orbital K-shell electron capture decay ) rates of the H--like heavy ions.
We approximate the magnetic field of the ESR by a uniform magnetic field.
Unlike the assertion by Lambiase et al., arXiv: 0811.2302 [nucl-th], we show
that a motion of the H-like heavy ion in a uniform magnetic field cannot be the
origin of the periodic time-dependence of the EC-decay rates of the H-like
heavy ions.Comment: 3 pages, 1 figur
On renormalizability of the massless Thirring model
We discuss the renormalizability of the massless Thirring model in terms of
the causal fermion Green functions and correlation functions of left-right
fermion densities. We obtain the most general expressions for the causal
two-point Green function and correlation function of left-right fermion
densities with dynamical dimensions of fermion fields, parameterised by two
parameters. The region of variation of these parameters is constrained by the
positive definiteness of the norms of the wave functions of the states related
to components of the fermion vector current. We show that the dynamical
dimensions of fermion fields calculated for causal Green functions and
correlation functions of left-right fermion densities can be made equal. This
implies the renormalizability of the massless Thirring model in the sense that
the ultra-violet cut-off dependence, appearing in the causal fermion Green
functions and correlation functions of left-right fermion densities, can be
removed by renormalization of the wave function of the massless Thirring
fermion fields only.Comment: 17 pages, Latex, the contribution of fermions with opposite chirality
is added,the parameterisation of fermion determinant by two parameters is
confirmed,it is shown that dynamical dimensions of fermion fields calculated
from different correlation functions can be made equal.This allows to remove
the dependence on the ultra-violet cut-off by the renormalization of the wave
function of Thirring fermion fields onl
qBounce: Systematic shifts of transition frequencies of gravitational states of ultra-cold neutrons using Ramsey gravity resonance spectroscopy
qBounce is using quantum states of ultra-cold neutrons in the gravitational
field of the Earth to investigate gravitation in the micrometre range. We
present current measurements taken in 2021 at the Institut Laue-Langevin (ILL)
to determine energy differences of these states by mechanically induced
transitions. This allows a determination of the local acceleration using a
quantum measurement. The data presented here results in .
The classical local value at the experiment is . We present
an analysis of systematic effects that induces shifts of the transition
frequency of order 100 mHz. The inferred value for at the experiment shows
a systematic shift of
Are there Local Minima in the Magnetic Monopole Potential in Compact QED?
We investigate the influence of the granularity of the lattice on the
potential between monopoles. Using the flux definition of monopoles we
introduce their centers of mass and are able to realize continuous shifts of
the monopole positions. We find periodic deviations from the -behavior of
the monopole-antimonopole potential leading to local extrema. We suppose that
these meta-stabilities may influence the order of the phase transition in
compact QED.Comment: 11 pages, 5 figure
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ