62 research outputs found

    Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment

    Get PDF
    We present results for transverse single-spin asymmetries in proton-proton collisions at kinematics relevant for AFTER, a proposed fixed-target experiment at the Large Hadron Collider. These include predictions for pion, jet, and direct photon production from analytical formulas already available in the literature. We also discuss specific measurements that will benefit from the higher luminosity of AFTER, which could help resolve an almost 40-year puzzle of what causes transverse single-spin asymmetries in proton-proton collisions.Comment: 10 pages, 4 figures; more details/discussion added to the text, references added/updated, version to appear in Advances in High Energy Physics for the Special Issue "Physics at a Fixed-Target Experiment Using the LHC Beams

    Small-xx Asymptotics of the Quark Helicity Distribution: Analytic Results

    Full text link
    In this Letter, we analytically solve the evolution equations for the small-xx asymptotic behavior of the (flavor singlet) quark helicity distribution in the large-NcN_c limit. These evolution equations form a set of coupled integro-differential equations, which previously could only be solved numerically. This approximate numerical solution, however, revealed simplifying properties of the small-xx asymptotics, which we exploit here to obtain an analytic solution. We find that the small-xx power-law tail of the quark helicity distribution scales as Ξ”qS(x,Q2)∼(1x)Ξ±h\Delta q^S (x, Q^2) \sim \left(\tfrac{1}{x} \right)^{\alpha_h} with Ξ±h=43Ξ±sNc2Ο€\alpha_h = \tfrac{4}{\sqrt{3}} \sqrt{\tfrac{\alpha_s N_c}{2\pi}}, in excellent agreement with the numerical estimate Ξ±hβ‰ˆ2.31Ξ±sNc2Ο€\alpha_h \approx 2.31\sqrt{\tfrac{\alpha_s N_c}{2\pi}} obtained previously. We then verify this solution by cross-checking the predicted scaling behavior of the auxiliary "neighbor dipole amplitude" against the numerics, again finding excellent agreement.Comment: 5 pages, 2 figure

    Single-spin asymmetries in the leptoproduction of transversely polarized Ξ›\Lambda hyperons

    Get PDF
    We analyze single-spin asymmetries (SSAs) in the leptoproduction of transversely polarized Ξ›\Lambda hyperons within the collinear twist-3 formalism. We calculate both the distribution and fragmentation terms in two different gauges (lightcone and Feynman) and show that the results are identical. This is the first time that the fragmentation piece has been analyzed for transversely polarized hadron production within the collinear twist-3 framework. In lightcone gauge we use the same techniques that were employed in computing the analogous piece in p↑p→π Xp^\uparrow p\to \pi\,X, which has become an important part to that reaction. With this in mind, we also verify the gauge invariance of the formulas for the transverse SSA in the leptoproduction of pions.Comment: 12 pages, 1 figure, reference added, version to appear in Phys. Lett.

    Longitudinal-transverse double-spin asymmetries in single-inclusive leptoproduction of hadrons

    Get PDF
    We analyze the longitudinal-transverse double-spin asymmetry in lepton-nucleon collisions where a single hadron is detected in the final state, i.e., ℓ⃗ N↑→h X\vec{\ell}\,N^\uparrow \rightarrow h\,X. This is a subleading-twist observable in collinear factorization, and we look at twist-3 effects in both the transversely polarized nucleon and the unpolarized outgoing hadron. Results are anticipated for this asymmetry from both HERMES and Jefferson Lab Hall A, and it could be measured as well at COMPASS and a future Electron-Ion Collider. We also perform a numerical study of the distribution term, which, when compared to upcoming experimental results, could allow one to learn about the "worm-gear"-type function g~(x)\tilde{g}(x) as well as assess the role of quark-gluon-quark correlations in the initial-state nucleon and twist-3 effects in the fragmenting unpolarized hadron.Comment: 14 pages, 7 figures, minor changes to the text, version to appear in Phys. Lett.

    Transversity distributions and tensor charges of the nucleon: extraction from dihadron production and their universal nature

    Full text link
    We perform the first global quantum chromodynamics (QCD) analysis of dihadron production for a comprehensive set of data in electron-positron annihilation, semi-inclusive deep-inelastic scattering, and proton-proton collisions, from which we extract simultaneously the transversity distributions of the nucleon and Ο€+Ο€βˆ’\pi^+\pi^- dihadron fragmentation functions. We incorporate in our fits known theoretical constraints on transversity, namely, its small-xx asymptotic behavior and the Soffer bound. We furthermore show that lattice-QCD results for the tensor charges can be successfully included in the analysis. This resolves the previously reported incompatibility between the tensor charges extracted from dihadron production data and lattice QCD. We also find agreement with results for the transversity and tensor charges obtained from measurements on single-hadron production. Overall, our work demonstrates for the first time the universal nature of all available information for the transversity distributions and the tensor charges of the nucleon
    • …
    corecore