6 research outputs found

    Mitochondrial DNA variants in genomic data diagnostic uplifts and predictive implications

    No full text
    A broad spectrum of rare disease presentations can now be investigated by analysing mitochondrial DNA (mtDNA) variants from whole-genome sequencing (WGS) data. However, mtDNA mutations may cause unanticipated, extended phenotypes and have reproductive implications. We recommend that these be considered by patients and clinicians before embarking on WGS

    NDUFA4 Mutations Underlie Dysfunction of a Cytochrome c Oxidase Subunit Linked to Human Neurological Disease

    Get PDF
    The molecular basis of cytochrome c oxidase (COX, complex IV) deficiency remains genetically undetermined in many cases. Homozygosity mapping and whole-exome sequencing were performed in a consanguineous pedigree with isolated COX deficiency linked toa Leigh syndrome neurological phenotype. Unexpectedly, affected individuals harbored homozygous splice donor site mutations in NDUFA4, a gene previously assigned to encode a mitochondrial respiratory chain complex I (NADH:ubiquinone oxidoreductase) subunit. Western blot analysis of denaturing gels and immunocytochemistry revealed undetectable steady-state NDUFA4 protein levels, indicating that the mutation causes a loss-of-function effect in the homozygous state. Analysis of one- and two-dimensional blue-native polyacrylamide gels confirmed an interaction between NDUFA4 and the COX enzyme complex in control muscle, whereas the COX enzyme complex without NDUFA4 was detectable with no abnormal subassemblies in patient muscle. These observations support recent work in cell lines suggesting that NDUFA4 is an additional COX subunit and demonstrate that NDUFA4 mutations cause human disease. Our findings support reassignment of the NDUFA4 protein to complex IV and suggest that patients with unexplained COX deficiency should be screened for NDUFA4 mutations. © 2013 The Authors

    Cardiac Outcomes in Adults With Mitochondrial Diseases

    No full text
    International audienceBackground: Patients with mitochondrial diseases are at risk of heart failure (HF) and arrhythmic major adverse cardiac events (MACE). Objectives: We developed prediction models to estimate the risk of HF and arrhythmic MACE in this population. Methods: We determined the incidence and searched for predictors of HF and arrhythmic MACE using Cox regression in 600 adult patients from a multicenter registry with genetically confirmed mitochondrial diseases. Results: Over a median follow-up time of 6.67 years, 29 patients (4.9%) reached the HF endpoint, including 19 hospitalizations for nonterminal HF, 2 cardiac transplantations, and 8 deaths from HF. Thirty others (5.1%) reached the arrhythmic MACE, including 21 with third-degree or type II second-degree atrioventricular blocks, 4 with sinus node dysfunction, and 5 sudden cardiac deaths. Predictors of HF were the m.3243A>G variant (HR: 4.3; 95% CI: 1.8-10.1), conduction defects (HR: 3.0; 95% CI: 1.3-6.9), left ventricular (LV) hypertrophy (HR: 2.6; 95% CI: 1.1-5.8), LV ejection fraction <50% (HR: 10.2; 95% CI: 4.6-22.3), and premature ventricular beats (HR: 4.1; 95% CI: 1.7-9.9). Independent predictors for arrhythmia were single, large-scale mtDNA deletions (HR: 4.3; 95% CI: 1.7-10.4), conduction defects (HR: 6.8; 95% CI: 3.0-15.4), and LV ejection fraction <50% (HR: 2.7; 95% CI: 1.1-7.1). C-indexes of the Cox regression models were 0.91 (95% CI: 0.88-0.95) and 0.80 (95% CI: 0.70-0.90) for the HF and arrhythmic MACE, respectively. Conclusions: We developed the first prediction models for HF and arrhythmic MACE in patients with mitochondrial diseases using genetic variant type and simple cardiac assessments
    corecore