59 research outputs found

    Applications of artificial intelligence-based models in vulnerable carotid plaque

    Get PDF
    Carotid atherosclerotic disease is a widely acknowledged risk factor for ischemic stroke, making it a major concern on a global scale. To alleviate the socio-economic impact of carotid atherosclerotic disease, crucial objectives include prioritizing prevention efforts and early detection. So far, the degree of carotid stenosis has been regarded as the primary parameter for risk assessment and determining appropriate therapeutic interventions. Histopathological and imaging-based studies demonstrated important differences in the risk of cardiovascular events given a similar degree of luminal stenosis, identifying plaque structure and composition as key determinants of either plaque vulnerability or stability. The application of Artificial Intelligence (AI)-based techniques to carotid imaging can offer several solutions for tissue characterization and classification. This review aims to present a comprehensive overview of the main concepts related to AI. Additionally, we review the existing literature on AI-based models in ultrasound (US), computed tomography (CT), and Magnetic Resonance Imaging (MRI) for vulnerable plaque detection, and we finally examine the advantages and limitations of these AI approaches

    Atrial and Ventricular Involvement in Acute Myocarditis Patients with Preserved Ejection Fraction: A Single-Center Cardiovascular Magnetic Resonance Study

    Get PDF
    Cardiac magnetic resonance (CMR) is commonly employed to confirm the diagnosis of acute myocarditis (AM). However, the impact of atrial and ventricular function in AM patients with preserved ejection fraction (EF) deserves further investigation. Therefore, the aim of this study was to explore the incremental diagnostic value of combining atrial and strain functions using CMR in patients with AM and preserved EF. This retrospective study collected CMR scans of 126 consecutive patients with AM (meeting the Lake Louise criteria) and with preserved EF, as well as 52 age- and sex-matched control subjects. Left atrial (LA) and left ventricular (LV) strain functions were assessed using conventional cine-SSFP sequences. In patients with AM and preserved EF, impaired ventricular and atrial strain functions were observed compared to control subjects. These impairments remained significant even in multivariable analysis. The combined model of atrial and ventricular functions proved to be the most effective in distinguishing AM patients with preserved ejection fraction from control subjects, achieving an area under the curve of 0.77 and showing a significant improvement in the likelihood ratio. These findings suggest that a combined analysis of both atrial and ventricular functions may improve the diagnostic accuracy for patients with AM and preserved EF

    Atrial and Ventricular Strain Imaging Using CMR in the Prediction of Ventricular Arrhythmia in Patients with Myocarditis

    Get PDF
    (1) Objective: Myocarditis can be associated with ventricular arrhythmia (VA), individual non-invasive risk stratification through cardiovascular magnetic resonance (CMR) is of great clinical significance. Our study aimed to explore whether left atrial (LA) and left ventricle (LV) myocardial strain serve as independent predictors of VA in patients with myocarditis. (2) Methods: This retrospective study evaluated CMR scans in 141 consecutive patients diagnosed with myocarditis based on the updated Lake Louise criteria (29 females, mean age 41 ± 20). The primary endpoint was VA; this encompassed ventricular fibrillation, sustained ventricular tachycardia, nonsustained ventricular tachycardia, and frequent premature ventricular complexes. LA and LV strain function were performed on conventional cine SSFP sequences. (3) Results: After a median follow-up time of 23 months (interquartile range (18–30)), 17 patients with acute myocarditis reached the primary endpoint. In the multivariable Cox regression analysis, LA reservoir (hazard ratio [HR] and 95% confidence interval [CI]: 0.93 [0.87–0.99], p = 0.02), LA booster (0.87 95% CI [0.76–0.99], p = 0.04), LV global longitudinal (1.26 95% CI [1.02–1.55], p = 0.03), circumferential (1.37 95% CI [1.08–1.73], p = 0.008), and radial strain (0.89 95% CI [0.80–0.98], p = 0.01) were all independent determinants of VA. Patients with LV global circumferential strain &gt; −13.3% exhibited worse event-free survival compared to those with values ≤ −13.3% (p &lt; 0.0001). (4) Conclusions: LA and LV strain mechanism on CMR are independently associated with VA events in patients with myocarditis, independent to LV ejection fraction, and late gadolinium enhancement location. Incorporating myocardial strain parameters into the management of myocarditis may improve risk stratification.</p

    Atrial and Ventricular Strain Imaging Using CMR in the Prediction of Ventricular Arrhythmia in Patients with Myocarditis

    Get PDF
    (1) Objective: Myocarditis can be associated with ventricular arrhythmia (VA), individual non-invasive risk stratification through cardiovascular magnetic resonance (CMR) is of great clinical significance. Our study aimed to explore whether left atrial (LA) and left ventricle (LV) myocardial strain serve as independent predictors of VA in patients with myocarditis. (2) Methods: This retrospective study evaluated CMR scans in 141 consecutive patients diagnosed with myocarditis based on the updated Lake Louise criteria (29 females, mean age 41 ± 20). The primary endpoint was VA; this encompassed ventricular fibrillation, sustained ventricular tachycardia, nonsustained ventricular tachycardia, and frequent premature ventricular complexes. LA and LV strain function were performed on conventional cine SSFP sequences. (3) Results: After a median follow-up time of 23 months (interquartile range (18–30)), 17 patients with acute myocarditis reached the primary endpoint. In the multivariable Cox regression analysis, LA reservoir (hazard ratio [HR] and 95% confidence interval [CI]: 0.93 [0.87–0.99], p = 0.02), LA booster (0.87 95% CI [0.76–0.99], p = 0.04), LV global longitudinal (1.26 95% CI [1.02–1.55], p = 0.03), circumferential (1.37 95% CI [1.08–1.73], p = 0.008), and radial strain (0.89 95% CI [0.80–0.98], p = 0.01) were all independent determinants of VA. Patients with LV global circumferential strain &gt; −13.3% exhibited worse event-free survival compared to those with values ≤ −13.3% (p &lt; 0.0001). (4) Conclusions: LA and LV strain mechanism on CMR are independently associated with VA events in patients with myocarditis, independent to LV ejection fraction, and late gadolinium enhancement location. Incorporating myocardial strain parameters into the management of myocarditis may improve risk stratification.</p

    Cine-cardiac magnetic resonance to distinguish between ischemic and non-ischemic cardiomyopathies: a machine learning approach

    Get PDF
    Objective This work aimed to derive a machine learning (ML) model for the differentiation between ischemic cardiomyopathy (ICM) and non-ischemic cardiomyopathy (NICM) on non-contrast cardiovascular magnetic resonance (CMR). Methods This retrospective study evaluated CMR scans of 107 consecutive patients (49 ICM, 58 NICM), including atrial and ventricular strain parameters. We used these data to compare an explainable tree-based gradient boosting additive model with four traditional ML models for the differentiation of ICM and NICM. The models were trained and internally validated with repeated cross-validation according to discrimination and calibration. Furthermore, we examined important variables for distinguishing between ICM and NICM. Results A total of 107 patients and 38 variables were available for the analysis. Of those, 49 were ICM (34 males, mean age 60 ± 9 years) and 58 patients were NICM (38 males, mean age 56 ± 19 years). After 10 repetitions of the tenfold cross-validation, the proposed model achieved the highest area under curve (0.82, 95% CI [0.47–1.00]) and lowest Brier score (0.19, 95% CI [0.13–0.27]), showing competitive diagnostic accuracy and calibration. At the Youden’s index, sensitivity was 0.72 (95% CI [0.68–0.76]), the highest of all. Analysis of predictions revealed that both atrial and ventricular strain CMR parameters were important for the identification of ICM patients. Conclusion The current study demonstrated that using a ML model, multi chamber myocardial strain, and function on non-contrast CMR parameters enables the discrimination between ICM and NICM with competitive diagnostic accuracy

    Effect of late gadolinium enhancement on left atrial impairment in myocarditis patients

    Get PDF
    ObjectiveThe aims of our study were to investigate the effect of the extent and location of late gadolinium enhancement (LGE) on the left atrium (LA) function in patients with acute myocarditis (AM) using cardiovascular magnetic resonance (CMR).MethodThis retrospective study performed CMR scans in 113 consecutive patients (89 males, 24 females; mean age 45.8 &amp; PLUSMN; 17.3 years) with AM that met the updated Lake Louise criteria. Reservoir, conduit, and booster LA functions were analyzed by CMR feature tracking using dedicated software. Besides LA strain measurements, myocardial scar location and extent were assigned and quantified by LGE imaging.ResultsAM patients with septal LGE had impaired reservoir, conduit, and conduit strain rate function in comparison with AM patients with non-septal LGE (p = 0.001, for all). In fully adjusted multivariable linear regression, reservoir and conduit were significantly associated with left ventricle (LV) LGE location (&amp; beta; coefficient = 8.205, p = 0.007; &amp; beta; coefficient = 5.185, p = 0.026; respectively). In addition, LA parameters decreased according to the increase in the extent of LV fibrosis (LGE &amp; LE; 10%; LGE 11-19%; LGE &amp; GE; 20%). After adjustment in multivariable linear regression, the association with LV LGE extent was no longer statistically significant.ConclusionIn patients with acute myocarditis, LA function abnormalities are significantly associated with LV LGE location, but not with LGE extent. Septal LGE is paralleled by a deterioration of LA reservoir and conduit function.Clinical relevance statementLeft atrium dysfunction is associated with the presence of late gadolinium enhancement in the left ventricle septum and can be useful in the clinical prognostication of patients with acute myocarditis, allowing individually tailored treatment.Key Points &amp; BULL; Myocardial fibrosis is related to atrial impairment.&amp; BULL; The location of myocardial fibrosis is the main determinant of atrial dysfunction in myocarditis patients.&amp; BULL; The quantification of atrial mechanisms may provide more in-depth insight into myocarditis pathophysiology.Key Points &amp; BULL; Myocardial fibrosis is related to atrial impairment.&amp; BULL; The location of myocardial fibrosis is the main determinant of atrial dysfunction in myocarditis patients.&amp; BULL; The quantification of atrial mechanisms may provide more in-depth insight into myocarditis pathophysiology.Key Points &amp; BULL; Myocardial fibrosis is related to atrial impairment.&amp; BULL; The location of myocardial fibrosis is the main determinant of atrial dysfunction in myocarditis patients.&amp; BULL; The quantification of atrial mechanisms may provide more in-depth insight into myocarditis pathophysiology

    Artificial Intelligence in the Differential Diagnosis of Cardiomyopathy Phenotypes

    Get PDF
    Artificial intelligence (AI) is rapidly being applied to the medical field, especially in the cardiovascular domain. AI approaches have demonstrated their applicability in the detection, diagnosis, and management of several cardiovascular diseases, enhancing disease stratification and typing. Cardiomyopathies are a leading cause of heart failure and life-threatening ventricular arrhythmias. Identifying the etiologies is fundamental for the management and diagnostic pathway of these heart muscle diseases, requiring the integration of various data, including personal and family history, clinical examination, electrocardiography, and laboratory investigations, as well as multimodality imaging, making the clinical diagnosis challenging. In this scenario, AI has demonstrated its capability to capture subtle connections from a multitude of multiparametric datasets, enabling the discovery of hidden relationships in data and handling more complex tasks than traditional methods. This review aims to present a comprehensive overview of the main concepts related to AI and its subset. Additionally, we review the existing literature on AI-based models in the differential diagnosis of cardiomyopathy phenotypes, and we finally examine the advantages and limitations of these AI approaches

    Atrial and ventricular strain using cardiovascular magnetic resonance in the prediction of outcomes of pericarditis patients: a pilot study

    Get PDF
    Objective Our study aimed to explore with cardiovascular magnetic resonance (CMR) the impact of left atrial (LA) and left ventricular (LV) myocardial strain in patients with acute pericarditis and to investigate their possible prognostic signifcance in adverse outcomes. Method This retrospective study performed CMR scans in 36 consecutive patients with acute pericarditis (24 males, age 52 [23–52]). The primary endpoint was the combination of recurrent pericarditis, constrictive pericarditis, and surgery for pericardial diseases defned as pericardial events. Atrial and ventricular strain function were performed on conventional cine SSFP sequences. Results After a median follow-up time of 16 months (interquartile range [13–24]), 12 patients with acute pericarditis reached the primary endpoint. In multivariable Cox regression analysis, LA reservoir and LA conduit strain parameters were all independent determinants of adverse pericardial diseases. Conversely, LV myocardial strain parameters did not remain an independent predictor of outcome. With receiving operating characteristics curve analysis, LA conduit and reservoir strain showed excellent predictive performance (area under the curve of 0.914 and 0.895, respectively) for outcome prediction at 12 months. Conclusion LA reservoir and conduit mechanisms on CMR are independently associated with a higher risk of adverse pericardial events. Including atrial strain parameters in the management of acute pericarditis may improve risk stratifcation. Clinical relevance statement Atrial strain could be a suitable non-invasive and non-contrast cardiovascular magnetic resonance parameter for predicting adverse pericardial complications in patients with acute pericarditis

    Machine Learning Detects Symptomatic Plaques in Patients With Carotid Atherosclerosis on CT Angiography

    Get PDF
    Background: This study aimed to develop and validate a computed tomography angiography based machine learning model that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with carotid atherosclerosis. Methods: The machine learning based model was trained using degree of stenosis and the volumes of 13 computed tomography angiography derived intracarotid plaque subcomponents (eg, lipid, intraplaque hemorrhage, calcium) to identify plaques associated with cerebrovascular events. The model was internally validated through repeated 10-fold cross-validation and tested on a dedicated testing cohort according to discrimination and calibration. Results: This retrospective, single-center study evaluated computed tomography angiography scans of 268 patients with both symptomatic and asymptomatic carotid atherosclerosis (163 for the derivation set and 106 for the testing set) performed between March 2013 and October 2019. The area-under-receiver-operating characteristics curve by machine learning on the testing cohort (0.89) was significantly higher than the areas under the curve of traditional logit analysis based on the degree of stenosis (0.51, P&lt;0.001), presence of intraplaque hemorrhage (0.69, P&lt;0.001), and plaque composition (0.78, P&lt;0.001), respectively. Comparable performance was obtained on internal validation. The identified plaque components and associated cutoff values that were significantly associated with a higher likelihood of symptomatic status after adjustment were the ratio of intraplaque hemorrhage to lipid volume (≥50%, 38.5 [10.1-205.1]; odds ratio, 95% CI) and percentage of intraplaque hemorrhage volume (≥10%, 18.5 [5.7-69.4]; odds ratio, 95% CI). Conclusions: This study presented an interpretable machine learning model that accurately identifies symptomatic carotid plaques using computed tomography angiography derived plaque composition features, aiding clinical decision-making
    • …
    corecore