248 research outputs found

    Targeting cellular calcium homeostasis to prevent cytokine-mediated beta cell death

    Get PDF
    AbstractPro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.</jats:p

    Progress on the development of a single line of sight x-ray framing camera

    Get PDF
    High-speed micro-strip micro-channel plate (MCP) x-ray framing cameras are a well established diagnostic for laser plasma experiments. Each frame acquired with these devices requires a separate image, and with most reasonable x-ray optics, a separate line of sight, causing potential parallax problems. Gated image tubes have a single line of sight capability, but the conventional designs have not been effectively extended to the short gating times of the micro-strip-line MCP camera. A hybrid camera combining image tube and micro-strip-line MCP technology has been under development at LLNL in collaboration with UR/LLE, and KENTECH Instruments. The key feature of this single line of sight (SLOS) hybrid image tube is a deflection assembly that continuously divides the electrons from a single photocathode x-ray image into a set of four electron images. Temporal gating of these images is carried out using a microstripline microchannel plate framing camera module positioned at the image plane of the electron tube. Characterization measurements performed using both X-rays from a Manson source and from laser generated plasmas, will be presented. Some implementation improvements will be discussed. The results will be compared to simulations carried out using the charged particle optics code SIMION. Various dissector designs were simulated in an effort to improve the image quality of the system

    Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells

    Get PDF
    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9(+) bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3(TA.LO) cell population, defined as Neurog3 transcriptionally active and Sox9(+) and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9(+) Neurog3(TA.LO) progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3(HI) cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9(+) Neurog3(TA.LO) progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9(+) Neurog3(TA.LO) endocrine-biased progenitors feed production of Neurog3(HI) endocrine-committed cells during pancreas organogenesis

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Rpl13a small nucleolar RNAs regulate systemic glucose metabolism

    Get PDF
    Small nucleolar RNAs (snoRNAs) are non-coding RNAs that form ribonucleoproteins to guide covalent modifications of ribosomal and small nuclear RNAs in the nucleus. Recent studies have also uncovered additional non-canonical roles for snoRNAs. However, the physiological contributions of these small RNAs are largely unknown. Here, we selectively deleted four snoRNAs encoded within the introns of the ribosomal protein L13a (Rpl13a) locus in a mouse model. Loss of Rpl13a snoRNAs altered mitochondrial metabolism and lowered reactive oxygen species tone, leading to increased glucose-stimulated insulin secretion from pancreatic islets and enhanced systemic glucose tolerance. Islets from mice lacking Rpl13a snoRNAs demonstrated blunted oxidative stress responses. Furthermore, these mice were protected against diabetogenic stimuli that cause oxidative stress damage to islets. Our study illuminates a previously unrecognized role for snoRNAs in metabolic regulation

    A Bayesian method for inferring quantitative information from FRET data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding biological networks requires identifying their elementary protein interactions and establishing the timing and strength of those interactions. Fluorescence microscopy and Förster resonance energy transfer (FRET) have the potential to reveal such information because they allow molecular interactions to be monitored in living cells, but it is unclear how best to analyze FRET data. Existing techniques differ in assumptions, manipulations of data and the quantities they derive. To address this variation, we have developed a versatile Bayesian analysis based on clear assumptions and systematic statistics.</p> <p>Results</p> <p>Our algorithm infers values of the FRET efficiency and dissociation constant, <it>K<sub>d</sub></it>, between a pair of fluorescently tagged proteins. It gives a posterior probability distribution for these parameters, conveying more extensive information than single-value estimates can. The width and shape of the distribution reflects the reliability of the estimate and we used simulated data to determine how measurement noise, data quantity and fluorophore concentrations affect the inference. We are able to show why varying concentrations of donors and acceptors is necessary for estimating <it>K<sub>d</sub></it>. We further demonstrate that the inference improves if additional knowledge is available, for example of the FRET efficiency, which could be obtained from separate fluorescence lifetime measurements.</p> <p>Conclusions</p> <p>We present a general, systematic approach for extracting quantitative information on molecular interactions from FRET data. Our method yields both an estimate of the dissociation constant and the uncertainty associated with that estimate. The information produced by our algorithm can help design optimal experiments and is fundamental for developing mathematical models of biochemical networks.</p
    corecore