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Abstract In the last decade, digital repositories of music
have undergone an enormous growth. Therefore, the avail-
ability of scalable and effective methods that provide content-
based access to these repositories has become critically
important. This study presents and tests a new geometric dis-
tance function that quantifies the harmonic distance between
two pieces of music. Harmony is one of the most important
aspects of music and we will show in this paper that har-
monic similarity can significantly contribute to the retrieval
of digital music. Yet, within the music information retrieval
field, harmonic similarity measures have received far less
attention compared to other similarity aspects. The distance
function we present, the Tonal pitch step distance, is based
on a cognitive model of tonality and captures the change of
harmonic distance to the tonal center over time. This dis-
tance is compared to two other harmonic distance measures.
We show that it can be efficiently used for retrieving simi-
lar chord sequences, and that it significantly outperforms a
baseline string matching approach. Although the proposed
method is not the best performing distance measure, it offers
the best quality–runtime ratio. Furthermore, we demonstrate
in a case study how our harmonic similarity measure can
contribute to the musicological discussion of the melody and
harmony in large-scale corpora.
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1 Introduction

Content-based music information retrieval (MIR1) is a
rapidly expanding area within multimedia research. On-line
music portals, like last.fm, iTunes, Pandora, Spotify and
Amazon, provide access to millions of songs to millions of
users around the world. Propelled by these ever-growing dig-
ital repositories of music, the demand for scalable and effec-
tive methods for providing access to these repositories still
increases at a steady rate. Generally, such methods aim to esti-
mate the subset of pieces that is relevant to a specific music
consumer. Within MIR, the notion of similarity is therefore
crucial: songs that are similar in one or more features to a
given relevant song are likely to be relevant as well. In con-
trast to the majority of approaches to notation-based music
retrieval that focus on the similarity of the melody of a song,
this paper presents a new method for retrieving music on the
basis of its harmony.

Within MIR, two main directions can be discerned: sym-
bolic music retrieval and the retrieval of musical audio. The
first direction of research stems from musicology and the
library sciences and aims to develop methods that provide
access to digitized musical scores. Here music similarity is
determined by analyzing the combination of symbolic enti-
ties, such as notes, rests, meter signs, etc., that are typically
found in musical scores. Musical audio retrieval arose when
the digitization of audio recordings started to flourish, and
the need for different methods to maintain and unlock digi-
tal music collections emerged. Audio-based MIR methods
extract features from the audio signal and use these fea-
tures for estimating whether two pieces of music are musi-
cally related. These features, e.g., chroma features [29] or

1 Within this paper, MIR refers to music (and not multimedia) infor-
mation retrieval.
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Mel-Frequency Cepstral coefficients MFCCs [19], do not
directly translate to the notes, beats, voices and instruments
that are used in the symbolic domain. Of course, much
depends on the application or task at hand, but we believe that
for judging the musical content of an audio source, translat-
ing the audio features into a high-level representation, which
contains descriptors that can be musically interpreted, should
be preferred. Although much progress has been made, auto-
matic polyphonic music transcription is a difficult problem,
and is currently too unreliable to use as a preprocessing step
for similarity estimation. Hence, in this paper, we focus on a
symbolic musical representation that can be transcribed rea-
sonably well from the audio signal using current technology:
chord sequences. As a consequence, for applying our method
to audio data, we rely on one of the available chord labeling
methods (See Sect. 2.2).

In this paper, we present a novel similarity measure for
chord sequences. We will show that such a method can be
used to retrieve harmonically related pieces and can aid in
musicological discussions. We will discuss related work on
harmonic similarity and the research from music theory and
music cognition that is relevant for our similarity measure in
Sect. 2. Next, we will present the Tonal pitch step distance
in Sect. 3. In Sect. 4, we show how our distance measure
performs in practice and we show that it can also contribute
to musicological discussions in Sect. 5. But first, we will
give a brief introduction on what actually constitutes tonal
harmony and harmonic similarity.

1.1 What is harmony?

Within Western tonal music, it is common to represent a
sound with a fixed frequency by a note. All notes have a name,
e.g., C, D, E, etc. The distance between two notes is called an
interval and is measured in semitones, which is the smallest
interval in Western tonal music. Also intervals have names:
minor second (1 semitone), second (2 semitones), minor third
(3 semitones), etc., up to an octave (12 semitones). When
two notes are an octave apart, the highest note will have
exactly twice the frequency of the lower. These two notes
are perceived by listeners as very similar, so similar even
that all notes one or more octave apart have the same name.
Hence, these notes are said to be in the same pitch class.

Harmony arises in music when two or more notes sound at
the same time.2 These simultaneously sounding notes form
chords, which can in turn be used to form chord sequences.
The two most important factors that characterize a chord are
its structure, determined by the intervals between the notes,
and the chord’s root. The root note is the note on which the
chord is built. The root is often, but it does not necessarily

2 One can even argue that notes played successively within a short time
frame also induce harmony.
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Fig. 1 A very typical and frequently used chord progression in the key
of C-major, often referred to as I-IV-V-I. Above the score the chord
labels, representing the notes of the chords in the section of the score
underneath the label, are printed. The roman numbers below the score
denote the interval between the chord root and the tonic of the key. We
discarded voice-leading for simplicity

have to be, the lowest sounding note. The most basic chord
is the triad, which consists of a root and two pitch classes a
third and a fifth interval above the root. If the third interval in
a triad is a major third, the triad is called a major triad, if it is a
minor third, the triad is called a minor triad. Figure 1 displays
a frequently occurring chord sequence. The first chord is
created by taking a C as root and subsequently a major third
interval (C–E) and a fifth interval (C–G) are added, yielding
a C-major chord. Above the score the names of the chords,
which are based on the root notes, are printed.

The internal structure of the chord has a large influence
on the consonance or dissonance of a chord: some combina-
tions of simultaneous sounding notes are perceived to have
a more tense sound than others. Another important factor
that contributes to perceived tension of a chord is the relation
between the chord and the key of the piece. The key of a piece
of music is the tonal center of the piece. It specifies the tonic,
which is the most stable, and often the last, pitch class in that
piece. Moreover, the key specifies the scale, which is the set
of pitches that occur most frequently, and that sound reason-
ably well together. Chords can be created from pitches that
belong to the scale, or they can borrow notes from outside the
scale, the latter being more dissonant. The root note of a chord
has an especially distinctive role, because the interval of the
chord root and the key largely determine the harmonic func-
tion of the chord. The most important harmonic functions are
the dominant (V) that builds up tension, a sub-dominant (IV)
that can prepare a dominant, and the tonic (I) that releases
tension. In Fig. 1, roman numbers denote the interval between
the root of the chord and the key, often called scale degrees,
are printed underneath the score.

Obviously, this is a rather basic view of tonal harmony.
For a thorough introduction to tonal harmony, we refer the
reader to [26]. Harmony is considered a fundamental aspect
of Western tonal music by musicians and music researchers.
For centuries, the analysis of harmony has aided composers
and performers in understanding the tonal structure of music.
The harmonic structure of a piece alone can reveal song struc-
ture through repetitions, tension and release patterns, tonal
ambiguities, modulations (i.e., local key changes), and musi-
cal style. For this reason, Western tonal harmony has become
one of the most prominently investigated topics in music
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theory and can be considered a feature of music that is quite
as distinctive as rhythm or melody. Nevertheless, harmonic
structure as a feature for music retrieval has received far less
attention than melody or rhythm.

1.2 Harmonic similarity and its application in MIR

Harmonic similarity depends not only on musical informa-
tion, but also largely on the interpretation of this information
by the human listener. Musicians as well as non-musicians
have extensive culture-dependent knowledge about music
that needs to be taken into account while modeling music
similarity [4,6]. Hence, we believe that music only becomes
music in the mind of the listener, and that not all information
needed for making good similarity judgments can be found
in the musical data alone [10].

In this light, we consider the harmonic similarity of two
chord sequences to be the degree of agreement between
structures of simultaneously sounding notes including the
agreement between global as well as local relations between
these structures as perceived by the human listener. By the
agreement between structures of simultaneously sounding
notes, we denote the similarity that a listener perceives when
comparing two chords in isolation and without surrounding
musical context. However, chords are rarely compared in
isolation and the relations to the global context—the key of
a piece—and the relations to the local context play a very
important role in the perception of tonal harmony. The local
relations can be considered the relations between functions of
chords within a limited time frame, for instance, the prepa-
ration of a chord with a dominant function by means of a
sub-dominant. All these factors play a role in the percep-
tion of tonal harmony and thus contribute to the harmonic
similarity of musical works.

Harmonic similarity also has practical value and offers
various benefits. It allows for finding different versions of
the same song even when melodies vary. This is often the
case in cover songs or live performances, especially when
these performances contain improvisations. Moreover, play-
ing the same harmony with different melodies is an essential
part of musical styles like jazz and blues. Also, variations
over standard basses in baroque instrumental music can be
harmonically closely related, e.g., chaconnes.

1.3 Contribution

We introduce a distance function that quantifies the dissimi-
larity between two sequences of musical chords. The distance
function is based on a cognitive model of tonality and mod-
els the change of chordal distance to the tonic over time. The
proposed measure can be computed efficiently and can be
used to retrieve harmonically related chord sequences. The
retrieval performance is examined in an experiment on 5,028

human-generated chord sequences, in which we compare it
to two other harmonic distance functions and measure the
effect of the chord representation. Although the proposed
distance measure is not the best performing measure, it is
much faster and offers the best quality–runtime ratio. We
furthermore show in a case study how the proposed measure
can contribute to the musicological discussion of the relation
between melody and harmony in melodically similar Bach
chorales. The work presented here extends and integrates the
earlier harmonic similarity work [11,13].

2 Related work

MIR methods that focus on the harmonic information in the
musical data are quite numerous. After all, a lot of music is
polyphonic, and limiting a retrieval system to melodic data
considerably restricts its application domain. Most research
seems to focus on complete polyphonic MIR systems e.g.,
[3]. By complete systems, we mean systems that do chord
transcription, segmentation, matching and retrieval all at
once. The number of papers that purely focus on the devel-
opment and testing of harmonic similarity measures is much
smaller. In the next section, we will review other approaches
to harmonic similarity, in Sect. 2.2, we will discuss the cur-
rent state of automatic chord transcription; in Sects. 2.3 and
2.4, we elaborate on the cognition of tonality and the cog-
nitive model relevant to the similarity measure that will be
presented in Sect. 3.

2.1 Harmonic similarity measures

An interesting symbolic MIR system based on the develop-
ment of harmony over time is the one developed by Pickens
and Crawford [25]. Instead of describing a musical segment
as a single chord, the authors represent a musical segment
as a 24-dimensional vector describing the ‘fit’ between the
segment and every major and minor triad, using the Euclid-
ean distance in the 4-dimensional pitch space as found by
Krumhansl [15] in her controlled listening experiments (see
Sect. 2.3). The authors use a Markov model to model the tran-
sition distributions between these vectors for every piece.
Subsequently, these Markov models are ranked using the
Kullback–Leibler divergence to obtain a retrieval result.

Other interesting work has been done by Paiement et al.
[24]. They define a similarity measure for chords rather than
for chord sequences. Their similarity measure is based on the
sum of the perceived strengths of the harmonics of the pitch
classes in a chord, resulting in a vector of 12 pitch classes
for each musical segment. Paiement et al. subsequently
define the distance between two chords as the Euclidean dis-
tance between two of these vectors representing the chords.
Next, they use a graphical model to model the hierarchical
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dependencies within a chord progression. In this model, they
use their chord similarity measure for calculating the sub-
stitution probabilities between chords and not for estimating
the similarity between sequences of chords.

Besides the distance measure that we will elaborate on
in this paper, which was earlier introduced in [11,13], there
exist two other methods that solely focus on the similarity of
chord sequences: an alignment-based approach to harmonic
similarity [14] and a grammatical parse tree matching method
[12]. The first two are quantitatively compared in in Sect. 4.

The chord sequence alignment system (CSAS) [14] is
based on local alignment and computes similarity between
two sequences of symbolic chord labels. By performing ele-
mentary operations, the one chord sequence is transformed
into the other chord sequence. The operations used to trans-
form the sequences are deletion or insertion of a symbol,
and substitution of a symbol by another. The most important
part in adapting the alignment is how to incorporate musical
knowledge and give these operations valid musical meaning.
Hanna et al. experimented with various musical data repre-
sentations and substitution functions and found a key rela-
tive representation to work well. For this representation, they
rendered the chord root as the difference in semitones
between the chord root and the key; substituting a major
chord for a minor chord and vice versa yields a penalty. The
total transformation from the one string into the other can
be solved by dynamic programming in quadratic time. Note
that the key relative representation of Hanna et al. requires
the global key to be known.

The third harmonic similarity measure using chord descrip-
tions is a generative grammar approach [12]. The authors use
a generative grammar of tonal harmony to parse the chord
sequences, which result in parse trees that represent harmonic
analyses of these sequences. Subsequently, a tree that con-
tains all the information shared by the two parse trees of two
compared songs is constructed and several properties of this
tree can be analyzed yielding several similarity measures.
However, the rejection of ungrammatical harmonies by the
parser is problematic, but can be resolved by applying an
error-correcting parser [9].

2.2 Automatic chord transcription

The application of harmony matching methods is extended
by the extensive work on chord label extraction from raw
musical data within the MIR community. Chord transcription
algorithms extract chord labels from either musical scores or
musical audio. Given a symbolic score, automatically deriv-
ing the right chord labels is not trivial. Even if information
about the notes, beats, voices, bar lines, key signatures, etc.,
is available, the algorithm must determine which notes are
unimportant passing notes. Moreover, sometimes the right
chord can only be determined by taking the surrounding

harmonies into account. Several algorithms can correctly seg-
ment and label approximately 84 % of a symbolic dataset (for
review, see [28]).

Although the extraction of chord labels from score data
is interesting, most digital music repositories store music
as (compressed) digitized waveforms. Therefore, to be able
to apply the methods presented in this paper to the audio
domain, automatic audio transcription methods are neces-
sary. Ideally, a piece of audio would be automatically tran-
scribed into a representation similar to a musical score.
However, although much progress has been made, multi-
ple fundamental frequency (F0) estimation, the holy grail in
polyphonic music transcription, is still considered too unre-
liable and imprecise for many MIR tasks. Hence, automatic
chord transcription has offered a welcome alternative, which
transforms polyphonic audio into musically feasible sym-
bolic annotations, and can be used for serious MIR tasks.

In general, most chord transcription systems have a sim-
ilar outline. First, the audio signal is split into a series of
overlapping frames. A frame is a finite observation interval
specified by a windowing function. Next, chroma vectors
[29], representing the intensities of the 12 different pitch
classes, are calculated for every frame. Finally, the chroma
vectors are matched with chord profiles, which is often done
using the Euclidean distance. The chord structure that best
matches the chroma vector is selected to represent the frame.
Although the digital signal processing-specific parameters
may vary, most approaches toward automatic chord transcrip-
tion use a chroma vector-based representation and differ in
other aspects like chroma tuning, noise reduction, chord tran-
sition smoothing and harmonics removal. For an elaborate
review of the related work on automatic chord transcription,
we refer the reader to [22].

2.3 Cognitive models of tonality

Only part of the information needed for reliable similarity
judgment can be found in the musical information. Untrained
as well as musically trained listeners have extensive knowl-
edge about music [4,6]; without this knowledge, it might not
be possible to grasp the deeper musical meaning that under-
lies the surface structure. We strongly believe that music
should always be analyzed within a broader music cognitive
and music theoretical framework, and that systems without
such additional musical knowledge are incapable of captur-
ing a large number of important musical features [10].

Of particular interest for the current research are the
experiments of Krumhansl [15]. Krumhansl is probably best
known for her probe-tone experiments in which subjects
rated the stability of a tone, after hearing a preceding short
musical passage. Not surprisingly, the tonic was rated most
stable, followed by the fifth, third, the remaining tones of
the scale, and finally the non-scale tones. Krumhansl also
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Table 1 The basic space of a C-major triad in the key of C-major (C =
0, C� = 1,…, B = 11), from [16]

(a) Root level: 0

(b) Fifths level: 0 7

(c) Triadic level: 0 4 7

(d) Diatonic level: 0 2 4 5 7 9 11

(e) Chromatic level: 0 1 2 3 4 5 6 7 8 9 10 11

C C� D E� E F F� G G� A B� B

did a similar experiment with chords: instead of judging the
stability of a tone listeners had to judge the stability of all
12 major, minor and diminished triads.3 The results show a
hierarchical ordering of harmonic functions that are gener-
ally consistent with music-theoretical predictions: the tonic
(I) was the most stable chord, followed by the subdominant
(IV) and dominant (V), etc.

These findings can very well be exploited in tonal similar-
ity estimation. Therefore, we base our distance function on a
model that not only captures the result found by Krumhansl
quite nicely, but is also solidly rooted in music theory: the
Tonal pitch space model.

2.4 Tonal pitch space

The Tonal pitch space (TPS) model [16] is built on the sem-
inal ideas in the Generative Theory of Tonal Music [17] and
is designed to make music theoretical and music cognitive
intuitions about tonal organization explicit. Hence, it allows
prediction of the proximities between musical chords that
correspond very well to the findings of Krumhansl [15]. The
TPS model is an elaborate one: it supports the estimation of
chord proximities within a single key, but also across differ-
ent key regions. In the distance measure we present in the
next section, we only use the within region TPS model, i.e.,
the part that predicts chord proximities within a single key.
We present an overview of the within region model here, but
also briefly address the full model.

The TPS model is a scoring mechanism that takes into
account the perceptual importance of the different notes in a
chord. The basis of the model is the basic space (see Table 1),
which allows for representing any possible chord within any
arbitrary key. In Table 1, the basic space is set to a C major
chord in the context of the C major key. Displayed horizon-
tally are all 12 pitch classes, starting with 0 as C. The basic
space comprises five hierarchical levels (a–e) consisting of
pitch class subsets ordered from stable to unstable. The first
and most stable level (a) is the root level, containing only
the root of the chord. The next level (b) adds the fifth of the

3 A diminished triad consists of a root, a minor third, and a diminished
fifth (six semitones).

Table 2 A Dm chord represented in the basic space of C major

2

2 9

2 5 9

0 2 4 5 7 9 11

0 1 2 3 4 5 6 7 8 9 10 11

C C� D E� E F F� G G� A B� B

Level d is set to the diatonic scale of C major and the levels a–c represent
the Dm chord, where the fifth is more stable than the third and the root
more stable than the fifth

chord. The third level (c) is the triadic level (Lerdahl’s term;
actually this level concerns all chord types) containing all
other pitch classes that are present in the chord. The fourth
level (d) is the diatonic level consisting of all pitch classes
of the diatonic scale of the key. The basic space can be set to
represent any key by cyclically shifting level (d) to match the
diatonic scale of the preferred key. The last and least stable
level (e) is the chromatic level containing all pitch classes.
Chords are represented at level a–c and because the basic
space is hierarchical, pitch classes present at a certain level
will also be present at subsequent levels. The more levels a
pitch class is contained in, the more stable the pitch class is
and the more consonant this pitch class is perceived by the
human listener within the current key. For the C major space
in Table 1, the root note (C) is the most stable, followed by
the fifth (G) and the third (E). It is no coincidence that the
basic space strongly resembles Krumhansl’s [15] probe-tone
data.

Table 2 shows how a Dm chord can be represented in the
context of the C major key. We can use the basic space to
calculate distances between chords within one tonal context
by transforming the basic space. First, the basic space must be
set to the tonal context in which the two chords are compared.
This is done by shifting pitch classes in the diatonic level (d)
in such manner that they match the pitch classes of the scale of
the desired key. The distance between two chords depends on
two factors: the number of diatonic fifth intervals between the
roots of the two compared chords and the number of shared
pitch classes between the two chords. These two factors are
captured in two rules: the chord distance rule and the circle-
of-fifths rule (from [16]):

Chord distance rule: dc(x, y) = j +k, where dc(x, y) is
the distance between chord x and chord y in the context
of key c. j is the minimal number of applications of the
circle-of-fifths rule in one direction needed to shift x
into y. k is the number of distinct pitch classes in the
levels (a–d) within the basic space of y compared to
those in the basic space of x. A pitch class is distinct if
it is present in the basic space of y but not in the basic
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Table 3 The basic space transformation from a C chord to a Dm chord
(a), in the context of the C major key and to a G7 chord (b), also in a C
major context

(a)

2

2 9

2 5 9

0 2 4 5 7 9 11

0 1 2 3 4 5 6 7 8 9 10 11

C C� D E� E F F� G G� A B� B

(b)

7

2 7

2 5 7 11

0 2 4 5 7 9 11

0 1 2 3 4 5 6 7 8 9 10 11

C C� D E� E F F� G G� A B� B

The distinct pitch classes are underlined

space of x. If the chord root is non-diatonic, j receives
the maximum penalty of 3.

Circle-of-fifths rule: move the levels (a–c) four steps to
the right or four steps to the left (modulo 7) on level d.

The circle-of-fifths rule makes sense music theoretically
because the motion of fifths can be found in cadences
throughout the whole of Western tonal music [26]. The TPS
distance accounts for differences in weight between the root,
fifth and third pitch classes by counting the distinct pitch
classes of the transformed basic space at all levels. Two exam-
ples of calculation are given in Table 3. Table 3(a) displays
the calculation of the distance between a C chord and a Dm
chord in the key of C major. The Dm basic space that has no
pitch classes in common with the C major basic space at level
(a–c, see Table 1). Therefore, all six underlined pitch classes
at the levels a–c are distinct pitch classes. Furthermore, a
shift from C to D requires two applications of the circle-of-
fifth rule, which yields a total distance of 8. In Table 3(b), one
pitch class (G) is shared between the C major basic space and
the G7 basic space. With one application of the circle-of-fifth
rule, the total chord distance becomes 6.

Two additional examples are given in Table 4. Table 4(a)
shows the calculation of the distance between a G and an
Em chord in the key of C major. The basic space of the G
chord and the basic space of the Em chord in the context
of C major have four distinct pitch classes (the chords have
two pitch classes in common) and three applications of the
circle-of-fifths rule are necessary to transform G into an E.
Hence, the total distance is 7. Table 4(b) displays the distance
between a D and a Dm in the context of a D major key. There

Table 4 The basic space transformation from a G to a Em chord, in
the context of C major (a) and the basic space transformation from a D
chord to a Dm chord, in the context of the D major key (b)

(a)

4

4 11

4 7 11

0 2 4 5 7 9 11

0 1 2 3 4 5 6 7 8 9 10 11

C C� D E� E F F� G G� A B� B

(b)

2

2 9

2 5 9

1 2 4 5 6 7 9 11

0 1 2 3 4 5 6 7 8 9 10 11

C C� D E� E F F� G G� A B� B

The distinct pitch classes are underlined

is only one distinct, but non-diatonic, pitch class and no shift
in root position yielding a distance of 2.

The original TPS model also supports changes of key by
augmenting the chord distance rule that quantifies the number
of fifth leaps4 of the diatonic level (d) to match a new region,
i.e., key [16, p. 60, termed full version]. By shifting the dia-
tonic level, the tonal context is changed and a modulation is
established. Next, the model as described above is applied in
the same manner, but with the diatonic level shifted to match
the new key. A difficulty of the regional extension is that it
features a rather liberal modulation policy, which allows for
the derivation of multiple different modulation sequences.
We do not use the regional chord distance rule for the dis-
tance measures here presented and we will explain why in the
next section. Hence, explaining the regional distance rules is
beyond the scope of this article and we refer the reader to
[16] for the details of the full model.

3 Tonal pitch step distance

On the basis of the TPS chord distance rule, we define a
distance function for chord sequences, named the Tonal pitch
step distance (TPSD). A low score indicates two very similar
chord sequences and a high score indicates large harmonic
differences between two sequences. The central idea behind
the TPSD is to compare the change of chordal distance to the
tonic over time. Hereby, we deviate from the TPS model in
two ways: first, we only use the within region chord distance
rule and discard the regional shifts; second, we apply the

4 Shifts of seven steps on the chromatic level (e).
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Fig. 2 A plot demonstrating the comparison of two similar versions
of All the Things You Are using the TPSD. The total area between the
two step functions, normalized by the duration of the shortest song,
represents the distance between both songs. A minimal area is obtained
by shifting one of the step functions cyclically

chord distance rule not to subsequent chords, but calculate
the distance between each chord and the tonic triad of the
global key of the song.

The choice for calculating the TPS chord distance between
each chord of the song and the tonic triad of the key of the
song, was a representational one: if the distance function is
based on comparing subsequent chords, the chord distance
depends on the exact progression by which that chord was
reached. This is undesirable because similar but not identical
chord sequences can then produce radically different scores.

When we plot the chordal distance to the tonic over time,
a step function appears. In this, we assume that time is repre-
sented discretely, and the duration of the chords is available in
the score. Next, the difference between two chord sequences
can then be defined as the minimal area between the two step
functions, f and g, of the sequences over all possible horizon-
tal shifts of f over g (see Fig. 2). These shifts are cyclic. If the
step functions have different lengths, the difference in length,
i.e., the non-overlapping part of the longer step function, is
defined to be zero. To prevent longer sequences from yielding
higher scores, the score is normalized by dividing it by the
length of the shortest step function. Because step functions
represent the tonal distance to the tonic, their representation
is key-relative and requires information about the global key.
Moreover, if a musical piece has many or large key changes,
information about these key changes is required as well.

The calculation of the area between f and g is straightfor-
ward. It can be calculated by summing all rectangular strips
between f and g, and trivially takes O(n + m) time, where
n and m are the number of chords in f and g, respectively.
An important observation is that if f is shifted along g, a
minimum occurs when two vertical edges coincide. Con-
sequently, all shifts where two edges coincide have to be
considered, yielding O(nm) shifts because in the worst case
every vertical edge in f has to be aligned to every vertical
edge in g. Hence, the total running time is O(nm(n + m)).

Table 5 An example of the minimal TPS chord distance and the max-
imal TPS chord distance

(a)

9

4 9

0 4 9

0 2 4 5 7 9 11

0 1 2 3 4 5 6 7 8 9 10 11

C C� D E� E F F� G G� A B� B

(b)

1

1 7 8

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

C C� D E� E F F� G G� A B� B

In (a), two Am chords are compared yielding a distance of 0. In (b), a
C chord is compared to a C� chord with all possible additions resulting
in a distance of 20. The distinct pitch classes are underlined. Note that
pitch classes present a certain level are also present at subsequent levels

This upper bound can be improved. Arkin et al. [2] devel-
oped an algorithm that minimized the area between two step
functions by shifting it horizontally as well as vertically in
O(nm log nm) time. The upper bound of their algorithm is
dominated by a sorting routine. We adapted the algorithm of
Arkin et al. in two ways for our own method: we shift only
in the horizontal direction and since we deal with discrete
time steps, we can sort in linear time using counting sort [5].
Hence, we achieve an upper bound of O(nm).

3.1 Metrical properties of the TPSD

For retrieval and indexing purposes, there are several benefits
if a distance measure is a metric. The TPSD would be a metric
if the following four properties held, where d(x, y) denotes
the TPSD distance measure for all possible chord sequences
x and y:

1. Non-negativity: d(x, y) ≥ 0 for all x and y.
2. Identity of indiscernibles: d(x, y) = 0 if and only if

x = y.
3. Symmetry: d(x, y) = d(y, x) for all x and y.
4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all

x, y and z.

We observe that the TPS model has a minimum and a max-
imum (see Table 5). The minimal TPS distance can obviously
be obtained by calculating the distance between two identi-
cal chords. In that case, there is no need to shift the root and
there are no uncommon pitch classes yielding a distance of 0.
This maximum TPS distance can be obtained, for instance,
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by calculating the distance between a C major chord and C�

chord containing all 12 pitch classes. The circle-of-fifths rule
yields the maximum score of 3, and the number of distinct
pitch classes in the C� basic space is 17. Hence, the total
score is 20.

The TPSD is clearly non-negative since the length of the
compared pieces, a and b, will always be a ≥ 0 and b ≥ 0; the
area between the two step functions and hence the TPSD will
always be d(x, y) ≥ 0. The TPSD is symmetrical: when we
calculate d(x, y) and d(y, x) for two pieces x and y, the short-
est of the two step functions is fixed and the other step func-
tion is shifted to minimize the area between the two, hence
the calculation of d(x, y) and d(y, x) is identical. However,
the TPSD does not satisfy the identity of indiscernibles prop-
erty because more than one chord sequence can lead to the
same step function, e.g., C G C and C F C in the key of C
major, all with equal durations. The TPS distance between
C and G and C and F is 5 in each case, yielding two iden-
tical step functions and a distance of 0 between these two
chord sequences. The TPSD also does not satisfy the trian-
gle inequality. Consider three chord sequences, x, y and z,
where x and z are two different chord sequences that share
one particular subsequence y. In this particular case, the dis-
tances d(x, y) and d(y, z) are both zero, but the distance
d(x, z) > 0 because x and y are different sequences. Hence,
for these chord sequences, d(x, z) ≤ d(x, y) + d(y, z) does
not hold.

4 Experiment 1

The retrieval capabilities of the TPSD were analyzed and
compared to the CSAS in an experiment in which we aimed
to retrieve similar but not identical songs. For every query,
a ranking was created on the basis of the values obtained
by the evaluated similarity measures. Next, these rankings
were analyzed. To place the performance of these distance
functions and the difficulty of the task in perspective, the per-
formance of the TPSD was compared with an algorithm we
call Baseline. To measure the impact of the chord represen-
tation, we compared three different flavors of both the TPSD
as well as the CSAS: in the first task, only the root note of
the chord was available to the algorithms; in the second task,
we presented the root note and the triad of the chord (major,
minor, augmented and diminished); and in the third task, we
presented the full chord with all extensions as they are found
in the data. Note that all evaluated similarity measures use a
key relative representation.

For the triad and full chord tasks, we used the TPSD
as described in the previous section. We will denote these
variants of the TPSD by TPSDtriad and TPSDfull,
respectively. For the tasks where only the chord root was
available, we used a different step function representation.

In these tasks, the interval between the chord root and
the root note of the key defined the step height and the
duration of the chord again defined the step length. This
matching method is very similar to the melody matching
approach by [1]. Note that the latter was never evaluated in
practice.

We also evaluated different variants of the CSAS. The first
variant, CSASroot, was evaluated in the root only task. In
this variant, +2 was added to the total alignment score if the
root note matched and −2 otherwise. In the chord triad task,
the same procedure was followed: if the triad matched, +2
was added and −2 if the triads did not match; this CSAS vari-
ant is named CSAStriad. In the full chord task, the within
region TPS model was used as a substitution function, this
variant is denoted by CSASfull.

The Baseline similarity measure used the edit distance
[18] between the two chord sequences represented as a string,
with a chord label at every beat, to quantify the similarity
between the two chord sequences. However, one might con-
sider this an unfair comparison because the TPSD and CSAS
have more information they can exploit than the edit distance,
namely information about the key. To make the comparison
more fair, we transposed all songs to C major and C minor
before matching the strings.

4.1 A chord sequence corpus

For the experiment, a large corpus of musical chord sequences
was assembled, consisting of 5,028 unique Band-in-a-Box
files that were created by music enthusiasts and collected
from the Internet. Band-in-a-Box is a commercial software
package [8] that is used to generate musical accompani-
ment based on a lead sheet.5 A Band-in-a-Box file stores
a sequence of chords and a certain style, whereupon the pro-
gram synthesizes a MIDI-based accompaniment. A Band-
in-a-Box file therefore contains a sequence of chords, a
melody, a style description, a key description, and some
information about the form of the piece, i.e., the number
of repetitions, intro, outro, etc. For extracting the chord label
information from the Band-in-a-Box files, we have extended
software developed by Simon Dixon and Matthias Mauch
[23].

These songs were labeled and duplicate sequences were
removed. All chord sequences describe complete songs;
those with fewer than 3 chords or shorter than 16 beats were
removed from the corpus. The titles of the songs, which func-
tion as a ground-truth, were checked and corrected manu-
ally. However, the size of the corpus is too large to check
all sequences manually, and because the data is mainly cre-
ated by non-professional users, the corpus might still contain

5 A lead sheet is a score that shows only the melody, the chord sequence,
and the lyrics (if any) of a composition.
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Table 6 The distribution of songs and song class sizes in the chord
sequence corpus

Class
size

No. of
classes

Songs
in class

100 × Classes/
total classes

100 × Songs/
total songs

1 3,253 3,253 64.7 82.5

2 452 904 18.0 11.5

3 137 411 8.2 3.5

4 67 268 5.3 1.7

5 25 125 2.5 0.6

6 7 42 0.8 0.2

7 1 7 0.1 0.0

8 1 8 0.2 0.0

10 1 10 0.2 0.0

Total 3,944 5,028 100 100

some harmonically atypical sequences or wrong key assign-
ments. The style of the songs is mainly jazz, latin and pop.

Within the collection, 1,775 songs contain two or more
similar versions, forming 691 classes of songs. Within a song
class, songs have the same title and share a similar melody,
but may differ in a number of ways. They may, for instance,
differ in key and form, they may differ in the number of repeti-
tions, or have a special introduction or ending. The richness
of the chords descriptions may also diverge, i.e., a C7�9�13

may be written instead of a C7, and common substitutions
frequently occur. Examples of the latter are relative substi-
tution, i.e., Am instead of C, or tritone substitution, e.g., F�7

instead of C7. Having multiple chord sequences describing
the same song allows for setting up a retrieval experiment in
which we aim to retrieve the other versions of a song. The
title of the song is used as ground-truth and the retrieval chal-
lenge is to find the other chord sequences representing the
same song.

The distribution of the song class sizes is displayed in
Table 6 and gives an impression of the difficulty of the
retrieval task. Generally, Table 6 shows that the song classes
are relatively small and that, for the majority of the queries,
there is only one relevant document to be found. It further-
more shows that 82.5 % of the songs in corpus are non-
relevant background items. The chord sequence corpus is
available to the research community and can be obtained
from the first author on request.

4.2 Results of experiment 1

We analyzed the rankings of all 1,775 queries. Figure 3 shows
the interpolated average precision calculated at 11 standard
recall levels, calculated as described in [20]. In all evalu-
ations, the queries were excluded from the analyzed rank-
ings. The graph shows clearly that the overall retrieval per-
formance of all algorithms can be considered good, and that

Recall & Interpolated Average Precision
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Fig. 3 The interpolated average precision measured at 11 recall levels
of the Baseline, CSAS and TPSD. The latter two are evaluated in three
tasks in which the amount of chord information is varied

the CSAS outperforms the TPSD, and both the TPSD and
the CSAS outperform the Baseline.

We also calculated the mean average precision (MAP).
The MAP is a single-figure measure, which measures the
precision at all recall levels and approximates the area under
the (uninterpolated) precision recall graph [20] (Table 7).
Having a single measure of retrieval quality makes it eas-
ier to evaluate the significance of the differences between
results. We tested whether the differences in MAP were sig-
nificant by performing a non-parametric Friedman test, with
a significance level of α = 0.01. We chose the Friedman test
because the underlying distribution of the data is unknown
and, in contrast to an ANOVA, the Friedman test does not
assume a specific distribution of variance. There were signifi-
cant differences between the runs, χ2(6, N = 1,775) = 896,
p < 0.0001. To determine which of the pairs of measure-
ments differed significantly, we conducted a post hoc Tukey
HSD test.6 As opposed to a T-test, the Tukey HSD test can
be safely used for comparing multiple means [7]. Table 8
displays the pairwise differences.

Most differences can be considered statistically signifi-
cant. Only the differences between CSASroot and TPSD-
triad, between CSASroot and TPSDfull, and between
TPSDfull and TPSDroot were not statistically signifi-
cant.7 Hence, we can conclude that both the CSAS and

6 All statistical tests were performed in Matlab 2011b.
7 The non-significant differences between CSASroot and TPSDtriad
or TPSDfull may seem counterintuitive. This lack of statistical signif-
icance can be explained by the fact that the number of queries in which
the CSASroot outperforms the TPSD-based measures is only slightly
higher than the number of queries in which the TPSD-based measures
outperform the CSASroot. However, when the CSASroot outper-
forms the TPSD-based measures, the differences in average precision
are larger, resulting in a higher MAP.
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Table 7 The mean average
precision (MAP) of the rankings
based on the compared
similarity measures and the
running times (hours:minutes)

CSAStriad CSASfull CSASroot TPSDtriad TPSDfull TPSDroot Baseline

MAP 0.696 0.666 0.622 0.580 0.565 0.559 0.459

Runtime 72:57 95:54 74:45 0:33 0:37 0:28 0:24

Table 8 The pairwise statistical
significance between all
similarity measures

A + denotes a statistically
significant difference and a
− denotes a non-significant
difference. The + and − signs
were derived by pairwise
comparison of the confidence
intervals

CSASfull CSASroot TPSDtriad TPSDfull TPSDroot Baseline

CSAStriad + + + + + +
CSASfull + + + + +
CSASroot − − + +
TPSDtriad + + +
TPSDfull − +
TPSDroot +

the TPSD outperform the Baseline method and that,
irrespective of the kind of chord representation, the CSAS
outperforms the TPSD. This does not mean that the chord rep-
resentation does not have an effect. It is surprising to observe
that the triad representation significantly outperforms the
other representations for both the CSAS and the TPSD. It
is furthermore interesting to see that using only the root of
the chord already yields very good results, which in some
cases is not even statistically different from using the full
chord specification. Apparently, discarding chord additions
acts as a form of syntactical noise reduction, since these addi-
tions, if they do not have a voice-leading function, they tend
to differ between versions and mainly add harmonic spice.
The retrieval performance of the CSAS is good, but comes at
a price. The CSAS run took on average about 81 h which is
considerably more than the average of 33 min of the TPSD
or the 24 min of the Baseline. Hence, the TPSD offers the
best quality–runtime ratio.

5 Case study: relating harmony and melody in Bach’s
chorales

In this section, we show how a chord labeling algorithm can
be combined with the TPSD and demonstrate how the TPSD
can aid in answering musicological questions. More specif-
ically, we investigate whether melodically related chorale
settings by Bach (1685–1750) are also harmonically related.
Doing analyses of this kind by hand is very time-consuming,
especially when corpora have a substantial size.

Chorales are congregational hymns of the German Protes-
tant church service [21]. Bach is particularly famous for
the imaginative ways in which he integrated these melodies
into his compositions. Within these chorale-based composi-
tions, the so-called Bach chorales form a subset consisting of

relatively simple four-voice settings of chorale melodies in a
harmony-oriented style often described as ‘Cantionalsatz’ or
‘stylus simplex’. Bach wrote most of these chorales as move-
ments of large-scale works (cantatas, passions) when he was
employed as a church musician in Weimar (1708–1717) and
Leipzig (1723–1750) [30]. A corpus of Bach chorales con-
sisting of 371 items was posthumously published by Bach
and Kirnberger (1784–1787), but some more have been iden-
tified since. This publication had a didactic purpose: the set-
tings were printed as keyboard scores and texts were omitted.
Consequently, over the last two centuries, the chorales have
been widely studied as textbook examples of tonal harmony.
Nevertheless, they generally provide very sensitive settings
of specific texts rather than stereotyped models and, despite
their apparent homogeneity, there is a fair amount of styl-
istic variation and evidence of development over time. Yet,
one can claim that Bach’s chorale harmonizations were con-
strained by the general rules of tonal harmony in force in the
first half of the 18th century and that the range of acceptable
harmonizations of a given melody was limited.

We hypothesize that if two melodies belong to the same
tune family, the harmonizations of these melodies are very
similar as well. Hence, we expect that melodically similar
pieces can also be retrieved on the basis of their harmonic
similarity. To determine whether the melodies of two chorales
are part of the same tune family, we asked an expert musi-
cologist to inspect the melodies that have the same title and
to decide if these melodies belong to the same tune family.8

If they do, it should be possible to retrieve these settings by
ranking them on the basis of their TPSD distance.

8 Note that manually doing the 3572 harmonic or melodic similarity
assessments is infeasible.
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5.1 Experiment 2

To test whether the melodically related Bach chorales were
also harmonically related, we performed a retrieval exper-
iment similar to the one in Sect. 4. We took 357 Bach
chorales and used the TPSD to determine how harmonically
related these chorales were. Next, we used every chorale that
belonged to a tune family, as specified by our musicological
expert, as a query, yielding 221 queries, and created a ranking
based on the TPSD. Subsequently, we analyzed the rankings
with standard retrieval performance evaluation methods to
determine whether the melodically related chorales could be
found on the basis of their TPSD.

The chorales scores are freely available9 in MIDI format.
But as explained in the previous sections, the TPSD takes
chords as input, not MIDI notes. We therefore use David
Temperley’s Chord root tracker [28], which is part of the
Melisma music analyzer.10 The chord root tracker does not
produce a label for a segment of score data like we have
seen in the rest of this paper. It divides the piece into chord
spans and it assigns a root label to each chord span. Thus,
it does not produce a complete chord label, e.g., A�m9 but,
this is not a problem, because the TPS model needs only to
know which pitch class is the root and which one is the fifth.
Once it is known which pitch class is the root, it is trivial
to calculate which pitch class is the fifth. The remainder of
the pitch classes in the chord is placed at level c of the basic
space. The Melisma chord root tracker is a rule-based algo-
rithm. It utilizes a metrical analysis of the piece performed
by the meter analyzer, which is also part of the Melisma
Music analyzer, and uses a small number of music theoret-
ically inspired preference rules to determine the chord root.
The score was segmented such that each segment contained
at least two simultaneously sounding notes. Manually anno-
tating a small random sample yielded a correctness of the
root tracker of approximately 80 %, which is in line with the
84 % claimed in [28].

The TPSD also needs knowledge of the keys of all
chorales. The key information was generously offered by
Martin Rohrmeier, who investigated the distributions of the
different chord transitions within the chorales corpus [27].
We selected the chorales for which the MIDI data, a pdf
score (for our musicological expert) and the key description
were available. After preparation, which included checking
for duplicate chorale, the corpus contained 357 pieces.

9 See http://www.jsbchorales.net/ (accessed 11 Feb 2013) for more
information.
10 The source code of the Melisma Music Analyzer is freely available at:
http://www.link.cs.cmu.edu/music-analysis/ (accessed 11 Feb 2013).
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Fig. 4 The average interpolated precision for 11 different recall levels
of the melodically related chorales retrieved on the basis of their TPSD
scores

Table 9 Tune and tune family distribution in the Bach chorales corpus

Family
size

No. of
families

Tunes in
family

100 × Families/
total families

100 × Tunes/
total tunes

1 136 136 38 68

2 24 48 13 12

3 17 51 14 8.5

4 10 40 11 5

5 5 25 7 2.5

6 3 18 5 1.5

7 4 28 8 2

11 1 11 3 0.5

Total 200 357 100 100

5.2 Results of experiment 2

We analyze the TPSD-based rankings of Bach’s chorales with
an average interpolated precision versus recall plot, displayed
in Fig. 4. To give an idea of the structure of the corpus, we
also printed the distribution of the sizes of the tune families
in Table 9. The graph in Fig. 4 shows clearly that a large pro-
portion of the chorales that are based on the same melody can
be found by analyzing only their harmony patterns. In gen-
eral, we can conclude that some melodically similar pieces
can be found by looking at their harmony alone. This is sup-
ported by a recognition rate, i.e., the percentage of queries
that have a melodically related chorale at rank one (exclud-
ing the query), of 0.71. However, a considerable number of
pieces cannot be retrieved on the basis of their TPSD: in 24 %
of the queries, the first related chorale is not within the first
10 retrieved chorales.
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This can have three reasons: the chorales are not harmon-
ically related, the TPSD did not succeed in capturing the
harmonic similarity well enough, or errors in the automatic
chord labeling disturb the similarity measurement. We made
a non-exhaustive analysis of the retrieval output to get a better
idea of the issues at stake, focusing on the larger tune fam-
ilies. First, it appears that, for some chorales, the retrieval
performance is very high. Perfect retrieval was attained for
Wo Gott, der Herr, nicht bei uns hält (5 items), Was Gott tut
das ist wolgetan and Wenn mein Stundlein (both four items).
Tune families with near-perfect retrieval include Jesu meine
Freude; Werde munter, mein Gemüte (both 6 items, 2 false
positives in total) and Auf meinen lieben Gott (5 items, 1 false
positive in total). Retrieval is also very good for the largest
group, O Welt, ich muß dich lassen (11 items). For each mem-
ber, all of the top 5 hits are from the same tune family, and
for most members all other items are ranked within the top
20. Only one item has more than one relevant item ranked
below 20 (BWV11 394).

Herzlich tut mich verlangen (7 items) presents a musi-
cally interesting situation: there seem to be two clusters, one
of four and one of three items. Chorales from each of the two
clusters match very well to one another, but chorales from
the other cluster are consistently ranked low. From a melodic
point of view, there are only a few unimportant differences.
The harmony is very different for the two groups, though.
The four-item cluster consists of settings in the major mode,
with the chorale melody ending on the third of the final chord.
The three-item cluster contains settings that are in the minor
mode: the chorale melody ends on the root of the final chord,
but this chord itself acts as a V in the rest of the piece. Gen-
erally, the larger tune families seem to consist of a cluster of
very similar items and one or two items that fall outside the
clusters. These ‘outliers’ generally rank the clustered items
relatively low. There are some factors that may explain out-
liers.

5.2.1 Different meter

The default meter for chorale melodies is 4/4. However,
variants in 3/4 exist for several chorales. In these, the basic
rhythmic pattern of two quarter notes is changed into a half
note followed by a quarter note. This has three effects: the
total length of the melody changes, some chords are extended
because they follow the durations of the melody notes, and
extra chords may be inserted on the second part of the half
notes. All three factors lead to a high TPSD score when com-

11 The Bach-Werke-Verzeichnis (BWV) is a numbering system
designed to order and identify the compositions by Johann Sebastian
Bach. The works are numbered thematically, not chronologically and
the prefix BWV, followed by the work’s number, has become a standard
identifier for Bach’s compositions.

paring chorales from the same tune family with different
meters. Examples include Wie nach einer Wasserquelle (two
outliers in 3/4 meter) and Nun lob, mein Seel, den Herren
(three versions in 3/4, one, the outlier, in 4/4 meter).

5.2.2 Phrase length

Individual phrases in a chorale melody typically end with a
note with a fermata, which may or may not have indicated
a prolongation of this note in performance. Sometimes how-
ever, fermatas are written out, replacing a quarter note by
a dotted half note. Also, notes within the phrase are some-
times extended. Both of these situations create an asynchrony
in the step function that contributes to a higher TPSD score.
Both situations occur in the two versions of the melody O
Ewigkeit, du Donnerwort, so that the two settings match each
other particularly badly.

5.2.3 Additional instrumental parts

Some of the chorales have additional instrumental parts. If
they are written in the same style as the vocal parts, this
seems to present no particular problems. However, when
they are different, this may lead to a higher TPSD score.
An example of this is Die Wollust dieser Welt (4 settings,
1 outlier). The outlier has an instrumental bass moving in
eighth notes, which lead to many additional chord labels on
weak beats. Since these labels are often dissonant chords, the
TPSD score with ‘normal’ settings—which would have the
second half of a more consonant chord at the corresponding
place—increases.

5.2.4 Differences in polyphony

There are a number of settings that are much more poly-
phonic than most of the others. Some of these may actually
be instrumental organ works written out in four voices. The
rhythmic and melodic behavior of the voices is very differ-
ent. An example is Christ lag in Todesbanden (5 items, 2
outliers). Of the outliers, BWV 278 is particularly noticeable
for its inner voices moving often in sixteenth notes and chro-
maticism. Here too a likely explanation is that extra, often
dissonant chord labels are generated.

The last two points are related to a limitation of the TPSD,
namely that all chords are considered equally important to
the overall perception of harmonic similarity. In fact, chords
have hierarchical relationships to each other, and their con-
tribution to perceived similarity depends on metric position
and duration as well.

False positives, items that get a high rank but belong to
a different tune family, are informative as well. Sometimes
these indeed appear to have an interesting relationship, as in
the case of Was mein Gott will. Two settings of this melody
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also retrieve items with the melody Wo Gott, der Herr, nicht
bei uns hält. It appears that the harmony of the first eight bars
is very similar and that the melodies themselves also could be
considered related. However, most of the false negatives are
difficult to interpret. One reason is the cyclic shifting, which
causes an alignment between items that disrupts the phrase
structure or may even lead to a match that includes a jump
from the end of the piece to its beginning. Another reason is
that different chords may have the same TPSD score, and that
similar step functions may be generated by chord sequences
that are musically quite different.

A different way of analyzing false negatives is by looking
into the average rank of each item over all queries. Ideally, the
average rank should be normally distributed over all items in
the collection, with a mean of half the collection size and a
small standard deviation. Deviations from this ideal indicate
that the similarity measure is sensitive to certain properties
in the collection. In particular, items with a high average rank
are likely to have certain properties that make them match to
a large number of unrelated items. We studied the 15 pieces
with the highest average rank and the 15 pieces with the
lowest average rank and found clear patterns. The major and
minor keys were distributed fairly equally over the dataset
(54 % major keys and 46 % minor keys), and the lengths
of the chorales are not correlated with the key of the piece,
r = 0.022.12 The 15 pieces with the highest rank were all
pieces in a minor key, and those with the lowest average rank
were mainly major. Also, the pieces with a low average rank
tend to be relatively long and the high-ranked ones tend to be
relatively short. The differences in length make sense because
the length-based normalization penalizes long chorales. The
effect of key is more difficult to explain. Possibly Bach’s
pieces in minor keys yield a more pronounced step function
that boosts the retrieval of these pieces.

Nevertheless, we can conclude that a considerable number
of pieces of the Bach chorales corpus that share the same
melody could be shown to be also harmonically related.

6 Concluding remarks

We presented a new geometric distance measure that captures
the harmonic distance between two sequences of musical
harmony descriptions, named the Tonal pitch step distance.
This distance is based on the changes of the distance between
chord and key as estimated by Lerdahl’s Tonal pitch space
model. The TPS model correlates with empirical data from
psychology and matches music-theoretical intuitions. A step
function is used to represent the change of chordal distance to
the tonic over time and the distance between two chord pro-
gressions is defined as the minimal area between two step

12 We used a Pearson correlation with key as a binary variable.

functions. The TPS model that lies at the basis of the TPSD
is very well grounded in both music theory and music cog-
nition. It correlates very well with the listening experiments
of Krumhansl [15], and it is therefore likely that the TPSD
captures at least some of the perceptual relations between
chords and their tonal contexts. The TPSD is a distance mea-
sure that is simple to use, requires little parameter tuning, is
key invariant, and can be computed efficiently.

The performance of the TPSD can be considered good,
especially if one takes the size of the test corpus into
account and the relatively small class sizes (see Table 6).
We compared the performance of the TPSD to the perfor-
mance of the Baseline string matching approach and a
chord sequence alignment system (CSAS). Both the TPSD
and the CSAS significantly outperform the Baseline string
matching approach. In turn, the CSAS significantly outper-
forms the TPSD statistically. However, the TPSD has a bet-
ter performance–runtime ratio than the CSAS. Surprisingly,
only using the root note of a chord gives good retrieval results.
In the case of the TPSD, the difference between using only
the root is not even statistically different from using full chord
specifications. Removing all chord additions and using only
the triad significantly improve these results for both similarity
measures. We furthermore demonstrated how the TPSD can
contribute to the musicological discussions on melody and
harmony in Bach’s chorales in a case study. We showed that
a considerable number of Bach chorales that share a melody
are also harmonically more similar.

Nevertheless, there is still room for improvement. The
TPSD does not handle large structural differences between
pieces very well, e.g., having extra repetitions or a bridge, etc.
A prior analysis of the structure of the piece combined with
partial matching could improve the retrieval performance.
Also smaller asynchronies between step functions can be
harmful; in future versions of the TPSD, these might be
removed by allowing a small number of horizontal edges to
be lengthened or shortened. Still, within the TPSD, all chords
are treated equally important, which is musicologically not
plausible. Hence, we expect that exploiting the musical func-
tion in the local as well as global contexts, as done in [12],
will improve harmonic similarity estimation.

Although we showed that the cover versions of chord
sequences can be retrieved quickly with the TPSD, poten-
tial users might also be interested in songs that share musi-
cal properties other than harmony. Hence, a straightforward,
but interesting, extension to a content-based retrieval system
would be the inclusion of other musical similarity measures.
First and foremost, melody should be added, but also tim-
bre or rhythmical similarity could be musically satisfying
additions. This directly raises questions about how one
should combine these different similarity measures. How
should they be weighted, and how can user feedback be taken
into account? Also, it might not always be similarity that a

123



202 Int J Multimed Info Retr (2013) 2:189–202

user is looking for; perhaps a user wants to retrieve songs that
share the same melody, but are harmonically very different.
This requires notions of harmonic dissimilarity, which might
not simply be the inverse of the distance measure presented
in this paper. Maybe a user is searching for surprising and not
necessarily similar music. These issues present some chal-
lenging directions for future MIR research, illustrating that
content-based retrieval of music is not yet a solved problem.

The retrieval performance of the TPSD was evaluated on
symbolic data in this paper. Nevertheless, recent develop-
ments in audio chord and key transcription extend its appli-
cation to audio data because the output of these methods can
be matched directly with the similarity measures here pre-
sented. The good performance of harmonic similarity mea-
sures leads us to believe that also in other musical domains,
such as the audio domain, retrieval systems will benefit from
chord sequence-based similarity measures.
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