180 research outputs found

    Selective targeting and thermal destruction of live cells using antibody functionalised gold nanoparticles

    Full text link
    University of Technology, Sydney. Faculty of Science.Precious metal nanoparticles have attracted considerable interest on account of their actual or potential applications in chemical, biological or medical analyses, and for their applications in various new types of optical devices or systems. These particles can be engineered to absorb light at a particular wavelength and they can also be chemically functionalised to bind to target cells. Active targeting of the gold particles to the site of a disease can be achieved, in principle, by attaching a suitable antibody to the surface of the gold. Localised heating arises when the affected tissue is irradiated with a laser tuned to the plasmon resonance of the nanoparticle because some of the incident laser light is converted to heat in the particle, which then flows out of the nanoparticle into the target cell. This principle is currently being explored overseas as the basis of a novel form of n1edical treatment for cancer. In this thesis, I extend this concept to develop a method for selectively killing different cellular targets. I report how gold nanoparticles, either spherical or rod-shaped, were functionalised with specific antibodies so that they would selectively attach to particular target cells: murine macrophage cells and tachyzoites of the protozoan parasite Toxoplasma gondii. Following this, the cells were exposed to defined wavelengths and low intensities of continuous laser irradiation from a HeNe laser or a solid state diode laser. Cell viability was determined using nucleic stain dye. Exposure of target cells to specific bioconjugated gold nanoparticles resulted in the highest number of cell death compared with other treatments. In addition, another useful result, independent of the actual process of photothermal therapy, is described in this thesis. This involves the attachment of gold nanoparticle-antibody conjugates to Toxoplasma gondii tachyzoites, which clearly reduced their infection of host cells. Therefore, the research described provides both for an exciting and novel possibility for in vivo killing of any type of target cells using photothermal therapy and for a means to decrease host cell invasion by an intracellular parasite in the body

    Therapeutic possibilities of plasmonically heated gold nanoparticles

    Full text link
    Nanoparticles of gold, which are in the size range 10-100 nm, undergo a plasmon resonance with light. This is a process whereby the electrons of the gold resonate in response to incoming radiation causing them to both absorb and scatter light. This effect can be harnessed to either destroy tissue by local heating or release payload molecules of therapeutic importance. Gold nanoparticles can also be conjugated to biologically active moieties, providing possibilities for targeting to particular tissues. Here, we review the progress made in the exploitation of the plasmon resonance of gold nanoparticles in photo-thermal therapeutic medicine. Β© 2005 Elsevier Ltd. All rights reserved

    Optical readout of the intracellular environment using nanoparticle transducers

    Full text link
    Β© 2014 Published by Elsevier Ltd. There is rapid growth in the use of multi-functional nanoparticles as transducers to probe the intracellular environment. New designs of nanoparticles can provide quantitative information at sub-cellular resolution on parameters such as pH, temperature and concentration of nicotinamide adenine dinucleotide (NADH) or selected metal ions. This new work builds on the existing practice of using nanoparticles and fluorescent dyes to provide enhanced microscopic images of cells, but goes beyond it by adding new functionalities and analytical capabilities. In this review, we discuss the recent literature on the development of such nanoparticles for simultaneous biosensing and imaging. We explore and examine the different measurements that will be possible, and analyze the likely accuracy and resolution that could be achieved

    Single and multiple detections of foodborne pathogens by gold nanoparticle assays.

    Full text link
    A late detection of pathogenic microorganisms in food and drinking water has a high potential to cause adverse health impacts in those who have ingested the pathogens. For this reason there is intense interest in developing precise, rapid and sensitive assays that can detect multiple foodborne pathogens. Such assays would be valuable components in the campaign to minimize foodborne illness. Here, we discuss the emerging types of assays based on gold nanoparticles (GNPs) for rapidly diagnosing single or multiple foodborne pathogen infections. Colorimetric and lateral flow assays based on GNPs may be read by the human eye. Refractometric sensors based on a shift in the position of a plasmon resonance absorption peak can be read by the new generation of inexpensive optical spectrometers. Surface-enhanced Raman spectroscopy and the quartz microbalance require slightly more sophisticated equipment but can be very sensitive. A wide range of electrochemical techniques are also under development. Given the range of options provided by GNPs, we confidently expect that some, or all, of these technologies will eventually enter routine use for detecting pathogens in food. This article is categorized under: Diagnostic Tools > Biosensing

    Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity

    Get PDF
    Nanomaterials have been the object of intense study due to promising applications in a number of different disciplines. In particular, medicine and biology have seen the potential of these novel materials with their nanoscale properties for use in diverse areas such as imaging, sensing and drug vectorisation. Gold nanoparticles (GNPs) are considered a very useful platform to create a valid and efficient drug delivery/carrier system due to their facile and well-studied synthesis, easy surface functionalization and biocompatibility. In the present study, stable antibiotic conjugated GNPs were synthesised by a one-step reaction using a poorly water soluble antibiotic, amoxicillin. Amoxicillin, a member of the penicillin family, reduces the chloroauric acid to form nanoparticles and at the same time coats them to afford the functionalised nanomaterial. A range of techniques including UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) were used to ascertain the gold/drug molar ratio and the optimum temperature for synthesis of uniform monodisperse particles in the ca. 30-40 nm size range. Amoxicillin-conjugated gold showed an enhancement of antibacterial activity against Escherichia coli compared to the antibiotic alone

    In situ measurement of bovine serum albumin interaction with gold nanospheres

    Get PDF
    Here we present in situ observations of adsorption of bovine serum albumin (BSA) on citratestabilized gold nanospheres. We implemented scattering correlation spectroscopy as a tool to quantify changes in the nanoparticle Brownian motion resulting from BSA adsorption onto the nanoparticle surface. Protein binding was observed as an increase in the nanoparticle hydrodynamic radius. Our results indicate the formation of a protein monolayer at similar albumin concentrations as those found in human blood. Additionally, by monitoring the frequency and intensity of individual scattering events caused by single gold nanoparticles passing the observation volume, we found that BSA did not induce colloidal aggregation, a relevant result from the toxicological viewpoint. Moreover, to elucidate the thermodynamics of the gold nanoparticle-BSA association, we measured an adsorption isotherm which was best described by an anti-cooperative binding model. The number of binding sites based on this model was consistent with a BSA monolayer in its native state. In contrast, experiments using poly-ethylene glycol capped gold nanoparticles revealed no evidence for adsorption of BSA

    Gold Nanoparticles Generated in Ethosome Bilayers, As Revealed by Cryo-Electron-Tomography

    Full text link
    Gold nanoparticles have been synthesized inside ethosomes, vesicles composed of phospholipid, ethanol and water, which could be very efficient not only in delivery probes to the skin but also as diagnostic and therapeutic multimodal agents. High efficiency encapsulation of gold nanoparticles is achieved by a simple strategy: the nanoparticles synthesis occurs simultaneously with the ethosomes formation, in the absence of any undesirable reducing agents. A three-dimensional reconstruction of a gold-embedded ethosome generated by cryoelectron tomography reveals that the gold particle is localized inside the lipid bilayer, leaving the ethosome surface and core free for further functionalization. The resulting gold nanoparticles are homogeneous in size and shape and, depending on synthesis temperature, the size ranges from 10 to 20 nm, as revealed by TEM. The ethosome-nanoparticles hybrids size has been investigated by means of dynamic light scattering and has been found to vary with temperature and gold salt concentration from 700 to 400 nm. Gold nanoparticles encapsulated ethosomes offer a versatile platform for the enhancement of pharmacological efficacy in transdermal and dermal delivery systems.Comment: 2 videos of the cryo-electron tomographic reconstruction in Supporting Informatio

    Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems

    Get PDF
    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level
    • …
    corecore