3 research outputs found

    Charge loss (or the lack thereof) for AdS black holes

    Get PDF
    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordström black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordström black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior

    Cold black holes in the Harlow–Hayden approach to firewalls

    Get PDF
    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow–Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark–gluon plasma. Firewalls aside, our work presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation
    corecore