27 research outputs found

    Energy refurbishment of historical buildings with public function: pilot case study

    Get PDF
    AbstractIn the last few decades, an increasing attention has been paid to the enhancement of energy performance and indoor comfort conditions of historical buildings, where the architectural heritage and artistic value do not allow typical retrofit intervention. The need to enhance the energy efficiency and environmental sustainability of historic buildings is addressed in this paper, through energy modeling and dynamic simulation of a real building with the integration of renewable energy plants for building heating and cooling. The pilot case study is "Palazzo Gallenga Stuart", a historical university building located in Perugia, Italy. The energy performance of the building has been evaluated in order to reduce the building energy demand through the implementation of high-efficiency technologies in historic buildings. The increase of the energy efficiency of the building has been pursued through the improvement of the actual energy plants' technology by introducing a more effective heat pump plant, in order to prevent the use of visually impacting external units on building historic façade

    A Batch Digester Plant for Biogas Production and Energy Enhancement of Organic Residues from Collective Activities

    Get PDF
    Abstract An innovative little-sized batch biogas plant has been recently developed by the Italian Biomass Research Centre. It was fed by the residual biomass (agriculture residues and zootechnical wastes) produced by a farm located in the countryside of Perugia, Italy. The successful experience allowed the research group to design an upgrade of the existing plant, making it replicable to every communitarian activity such as Conference Halls, Schools, Condos, where organic biomass is produced as waste. Biomass recovery from markets, canteens and little food companies represents an opportunity for the installation of new residues-powered plants, achieving the production of both electricity and thermal energy for house heating and industrial processes. The collected biomass could also be integrated with pruning or residual biomass from the maintenance of the green and the neighbouring municipal wastewater from a septic tank. The simplicity, automaticity, and the cost-effectiveness of the plant, together with the incentives from electric energy injection to the grid, made the investment payable in a few years, allowing the operator to gain from renewable sources. Little sized biogas plants solves the problem of harvesting and disposal of the organic waste, reducing its transportation costs and producing green energy. The paper presents the preliminary design of the plant

    Influence of volatiles (H 2 O and CO 2 ) on shoshonite phase equilibria

    Get PDF
    t. Experiments were performed at 500 MPa, 1080 °C and water activities (aH2O) from 0.0 to 1.0, in fluid-present and fluid-absent conditions, with the aim of constraining the effect of volatiles on phase equilibrium assemblages of a shoshonite from Vulcanello (Aeolian Islands, Italy). Experiments were run both under reducing and oxidizing conditions and results show that proportions, shapes and size of crystals vary as a function of the volatile composition (XH2O and XCO2) and volatile content. Clinopyroxene (Cpx) is the main crystallising phase and is compositionally analogous to Cpx crystals found in the natural rock. Plagioclase (Pl) is stable only for water activity lower than 0.1, whereas Fe–Ti oxides are present in all experimental runs, except for those where log f O2 was lower than −9, (∆NNO −0.11) irrespective of the presence of CO2. The addition of CO2 (2.8 wt%) in nominally dry experimental charges substantially reduces the crystallinity by ca. 1/3 compared to volatile free experiments. This result has important consequences upon the physical properties of the magma because it influences its viscosity and, as a consequence, velocity during its travel to the Earth surface

    Cooling history and emplacement of a pyroxenitic lava as proxy for understanding Martian lava flows

    Get PDF
    Terrestrial analogues are often investigated to get insights into the geological processes occurring on other planetary bodies. Due to its thickness and petrological similarities, the pyroxenitic layer of the 120m-thick magmatic pile Theo’s Flow (Archean Abitibi greenstone belt Ontario, Canada), has always been regarded as the terrestrial analogue for Martian nakhlites. However, its origin and cooling history and, as a consequence those of nakhlites, have always been a matter of vigorous debate. Did this lava flow originate from a single magmatic event similar to those supposed to occur on Mars or do the different units derive from multiple eruptions? We demonstrate, by a combination of geothermometric constraints on augite single crystals and numerical simulations, that Theo’s Flow has been formed by multiple magma emplacements that occurred at different times. This discovery supports the idea that the enormous lava flows with similar compositions observed on Mars could be the result of a process where low viscosity lavas are emplaced during multiple eruptions. This has profound implications for understanding the multiscale mechanisms of lava flow emplacement on Earth and other planetary bodies

    Retrieving magma composition from TIR spectra: implications for terrestrial planets investigations

    Get PDF
    Emissivity and reflectance spectra have been investigated on two series of silicate glasses, having compositions belonging to alkaline and subalkaline series, covering the most common terrestrial igneous rocks. Glasses were synthesized starting from natural end-members outcropping at Vulcano Island (Aeolian Islands, Italy) and on Snake River Plain (USA). Results show that the shift of the spectra, by taking Christiansen feature (CF) as a reference point, is correlated with SiO2 content, the ScfM factor and/or the degree of polymerization state via the nBo/t and temperature. the more evolved is the composition, the more polymerized the structure, the shorter the wavelength at which CF is observable. CF shift is also dependent on temperature. The shape of the spectra discriminates alkaline character, and it is related to the evolution of Qn structural units. Vulcano alkaline series show larger amount of Q4 and Q3 species even for mafic samples compared to the subalkaline Snake River Plain series. Our results provide new and robust insights for the geochemical characterization of volcanic rocks by remote sensing, with the outlook to infer origin of magmas both on Earth as well as on terrestrial planets or rocky bodies, from emissivity and reflectance spectra

    Spectral investigation of volcanic alteration deposits on Vulcano island /Italy as planetary analog for acid alteration conditions on Mars

    Get PDF
    During the fifth International Summer School held on Vulcano (Eolian Islands, Italy) in June 2019 we started the investigation of volcanic deposits with different spectral instruments combining mineralogical, elemental and molecular information [1, 2]. The island of Vulcano presents an extremely large variety of volcanic products [3] in extreme acid alteration conditions. Acidic alteration may also have been a key process throughout Martian geologic history making Vulcano a perfect analog for studies on Mars by defining the geochemistry at these sites. In this work we present an update of our spectral investigations based on the VIS-NIR spectral measurements

    Thermal-IR emissivity investigation on lab-made silicate rocks: implications for asteroidal and planetary studies.

    No full text
    Silicates are the main constituent of volcanic terrains on terrestrial planets and other rocky bodies in the solar system [1]. Typically, these volcanic terrains are constituted by fragmented pyroclasts whose texture is often afanitic or porphyric rather than holocrystalline: this means that the fraction of crystalline material is less relevant than the fraction of amorphous, or glassy, material. Thus, it is of paramount importance to take into account amorphous silicate phases to explore the influence of glass/crystal ratio on the spectral response of volcanic rocks, to better interpret available and future remotely sensed spectra from past and future missions [2, 3]. Here we report the results of a study concerning mafic volcanic products which were synthesized in order to present different degrees of crystallinity: three basaltic melts were cooled at different rates to obtain different textures, from totally amorphous to crystalline. Finally, they were analysed by means of emissivity in the thermal-IR range at different temperatures
    corecore