45 research outputs found

    Results from the WHO external quality assessment for the respiratory syncytial virus pilot, 2016-17

    Get PDF
    Background: External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. Methods: The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. Results: Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. Conclusions: These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended. </div

    Results from the WHO external quality assessment for the respiratory syncytial virus pilot, 2016-17

    Get PDF
    BACKGROUND : External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. METHODS : The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. RESULTS : Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. CONCLUSIONS : These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended.The Bill and Melinda Gates Foundation, the Respiratory Viruses Branch, Division of Viral Diseases, CDC, Atlanta, and the CDC International Reagent Resource (IRR), USA.http://www.wileyonlinelibrary.com/journal/irvam2020Medical Virolog

    Results from the second WHO external quality assessment for the molecular detection of respiratory syncytial virus, 2019-2020

    Get PDF
    BACKGROUND: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. METHODS: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. RESULTS: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. CONCLUSIONS: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets

    Respiratory Syncytial Virus G Protein Sequence Variability among Isolates from St. Petersburg, Russia, during the 2013–2014 Epidemic Season

    No full text
    Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January&ndash;April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses

    Antibacterial Properties of Peptide and Protein Fractions from <i>Cornu aspersum</i> Mucus

    No full text
    The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW 20 kDa against five bacterial pathogens—Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance

    Cellular susceptibility and oxidative stress response to menadione of logarithmic, quiescent, and nonquiescent Saccharomyces cerevisiae cell populations

    No full text
    The aim of the present study was to compare cellular susceptibility and oxidative stress response of S. cerevisiae logarithmic (log), quiescent (Q), and non-quiescent (NQ) cell populations to menadione – a well-known inducer of oxidative stress. Three main approaches were used: microbiological – cell survival, molecular – constant field gel electrophoresis for detection of DNA double-strand breaks (DSB), and biochemical – measurement of reactive oxygen species (ROS) levels, oxidized proteins, lipid peroxidation, glutathione, superoxide dismutase (SOD) and catalase on S. cerevisiae haploid strain BY4741. The doses causing 20% (LD20) and 50% (LD50) lethality were calculated. The effect of menadione as a well-known oxidative stress inducer is compared in the log, Q, and NQ cells. Survival data reveal that Q cells are the most susceptible to menadione with LD50 corresponding to 9 µM menadione. On the other hand, dose-dependent DSB induction is found only in Q cells confirming the results shown above. No effect on DSBs levels is observed in log and NQ cells. Further, the oxidative stress response of the cell populations is clarified. Results show significantly higher levels of SOD and ROS in Q cells than in log cells after the treatment with 100 µM menadione. On the other side, higher induction of oxidized proteins, malondialdehyde, and glutathione is observed after menadione treatment of log cells. Our study provides evidence that Saccharomyces cerevisiae quiescent cells are the most susceptible to the menadione action. It might be suggested that the DNA damaging and genotoxic action of menadione in Saccharomyces cerevisiae quiescent cells could be related to ROS production

    Safety and immunogenicity of trivalent inactivated influenza vaccine in adults 60 years of age and older: a phase II, a randomized, comparative trial in Kazakhstan

    No full text
    Background The study was aimed at comparative evaluation of seasonal influenza vaccine RIBSP versus commercial vaccine VAXIGRIP® for immunogenicity and safety in the course of clinical trial phase II on healthy subjects up to 60 years. Methods The trial involved 150 subjects in randomized 2:1 groups that received either RIBSP vaccine or comparator vaccine VAXIGRIP®. One dose (0.5 ml) of either vaccine contained 15 µg of hemagglutinin of each influenza virus strain recommended by WHO for the Northern hemisphere in 2016–2017 flu season. The observation period lasted 21 days. The trial was registered at ClinicalTrials.gov identifier NCT 03016143. Results Assessment of immunogenic activity of the vaccine under study showed that in 21 days the portion of participants with 4-fold seroconversions was 80.0% to А/H1N1; 65.0% to А/H3N2 and 64.0% to B virus. Antibody titer increase factor in the group of subjects that received RIBSP vaccine was 13.4 for А/H1N1; 5.2 for А/H3N2 and 5.2 for B virus. The subjects that received RIBSP vaccine demonstrated 88% seroprotection rate against А/H1N1; 75% against А/H3N2 and 61% against B virus. In the course of evaluating the vaccine safety, no serious adverse events were recorded. All changes of laboratory data were slight and single in most cases. All recorded local reactions have been light in character and these have been predicted reactions observed at vaccination against influenza. Conclusion Comparison vaccines RIBSP and VAXIGRIP®, showed similar immunogenic activity. The RIBSP vaccine is safe and immunogenic for the elderly and conforms to international criteria in CPMP/BWP/214/96

    Saccharomyces cerevisiae yeast cells as a test system for assessing Zeocin toxicity

    No full text
    Having unique genetic machinery and a high degree of conservation with higher eukaryotes, the yeast Saccharomyces cerevisiae is recognised as a smart experimental system for studying the modes of chemical toxicity. The present study was undertaken to elucidate the changes in the intracellular redox homeostasis and key macromolecule structure following exposure to Zeocin. Cell populations of logarithmic, quiescent (Q) and non-quiescent (NQ) cells of Saccharomyces cerevisiae BY4741 were used as a model to examine the cytotoxic effect of this radiomimetic. The levels of endogenous ROS, oxidized lipids, carbonylated proteins, and glutathione were analysed after treatment with Zeocin (IC50). An increase in ROS production and respectively increased oxidative stress was detected in all three types of cell populations, with the highest degree being observed in proliferating S. cerevisiae BY4741 cells. The stress response of both proliferating and stationary phase (Q and NQ) cells to Zeocin included an overexpression of glutathione. The quiescent cells also showed very low DNA susceptibility to high Zeocin concentration (100–300 µg/ml), presented as no induced double-strand breaks (DSBs) in the macromolecule. Based on our research it could be concluded that the cellular physiological state is a critical factor determining the resistance to environmental stress with Q cells being the most robust
    corecore