13 research outputs found

    Impulsive Fermi magnon-phonon resonance in antiferromagnetic CoF2CoF_{2}

    Full text link
    Understanding spin-lattice interactions in antiferromagnets is one of the most fundamental issues at the core of the recently emerging and booming fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear spin-lattice coupling was discovered in an antiferromagnet which opened the possibility to control the nonlinear coupling strength and thus showing a novel pathway to coherently control magnon-phonon dynamics. Here, utilizing intense narrow band terahertz (THz) pulses and tunable magnetic fields up to 7 T, we experimentally realize the conditions of the Fermi magnon-phonon resonance in antiferromagnetic CoF2CoF_{2}. These conditions imply that both the spin and the lattice anharmonicities harvest energy transfer between the subsystems, if the magnon eigenfrequency fmf_{m} is twice lower than the frequency of the phonon 2fm=fph2f_{m}=f_{ph}. Performing THz pump-infrared probe spectroscopy in conjunction with simulations, we explore the coupled magnon-phonon dynamics in the vicinity of the Fermi-resonance and reveal the corresponding fingerprints of an impulsive THz-induced response. This study focuses on the role of nonlinearity in spin-lattice interactions, providing insights into the control of coherent magnon-phonon energy exchange

    Terahertz light-driven coupling of antiferromagnetic spins to lattice

    No full text
    Understanding spin-lattice coupling represents a key challenge in modern condensed matter physics, with crucial importance and implications for ultrafast and two-dimensional magnetism. The efficiency of angular momentum and energy transfer between spins and the lattice imposes fundamental speed limits on the ability to control spins in spintronics, magnonics, and magnetic data storage. We report on an efficient nonlinear mechanism of spin-lattice coupling driven by terahertz light pulses. A nearly single-cycle terahertz pulse resonantly interacts with a coherent magnonic state in the antiferromagnet cobalt difluoride (CoF2) and excites the Raman-active terahertz phonon. The results reveal the distinctive functionality of antiferromagnets that allows ultrafast spin-lattice coupling using light

    >

    No full text

    Nonreciprocity of Optical Absorption in the Magnetoelectric Antiferromagnet CuB<sub>2</sub>O<sub>4</sub>

    No full text
    The change in the absorption spectra due to reversal of the direction of light propagation (nonreciprocity of absorption) is a consequence of a simultaneous violation of both time-reversal and spatial-inversion symmetries. Here, we report on a high-resolution spectroscopic study of absorption nonreciprocity in the noncentrosymmetric multiferroic CuB2O4 below the antiferromagnetic transition temperature TN = 21 K in the commensurate phase in magnetic fields up to 0.5 T. The study was performed in a broad spectral region covering several exciton transitions, which all are followed by an anomalously rich structure due to the multiple exciton-magnon-phonon satellites. Two components were resolved for the spectral line near 1.4 eV corresponding to the exciton transition between the ground and the first excited state. A quantitative theory of the optical absorption and nonreciprocity at this line was developed. The theory takes into account the interference between the electric and magnetic dipole contributions to the absorption and gives an adequate explanation of the relevant effects

    Laser-induced magnetization precession in the magnetite Fe<sub>3</sub>O<sub>4</sub> in the vicinity of a spin-reorientation transition

    No full text
    Using time-resolved magneto-optical pump-probe technique we demonstrate excitation of magnetization precession in a single crystalline bulk magnetite Fe3O4 below and in the vicinity of the Verwey and spin-reorientation (SR) phase transitions. Pronounced temperature dependence of the precession amplitude is observed suggesting that the excitation occurs via laser-driven spin-reorientation transition. Similarity observed between the characteristic features of the laser-induced ultrafast SR and Verwey transitions suggests that they both rely on the same microscopic processes.publishe

    The importance of the interface for picosecond spin pumping in antiferromagnet-heavy metal heterostructures

    No full text
    Funder: Royal SocietyAbstractInterfaces in heavy metal (HM) - antiferromagnetic insulator (AFI) heterostructures have recently become highly investigated and debated systems in the effort to create spintronic devices that function at terahertz frequencies. Such heterostructures have great technological potential because AFIs can generate sub-picosecond spin currents which the HMs can convert into charge signals. In this work we demonstrate an optically induced picosecond spin transfer at the interface between AFIs and Pt using time-domain THz emission spectroscopy. We select two antiferromagnets in the same family of fluoride cubic perovskites, KCoF3 and KNiF3, whose magnon frequencies at the centre of the Brillouin zone differ by an order of magnitude. By studying their behaviour with temperature, we correlate changes in the spin transfer efficiency across the interface to the opening of a gap in the magnon density of states below the Néel temperature. Our observations are reproduced in a model based on the spin exchange between the localized electrons in the antiferromagnet and the free electrons in Pt. Through this comparative study of selected materials, we are able to shine light on the microscopy of spin transfer at picosecond timescales between antiferromagnets and heavy metals and identify a key figure of merit for its efficiency: the magnon gap. Our results are important for progressing in the fundamental understanding of the highly discussed physics of the HM/AFI interfaces, which is the necessary cornerstone for the designing of femtosecond antiferromagnetic spintronics devices with optimized characteristics.</jats:p

    High-resolution resonant inelastic extreme ultraviolet scattering from orbital and spin excitations in a Heisenberg antiferromagnet

    No full text
    We report a high-resolution resonant inelastic extreme ultraviolet (EUV) scattering study of the quantum Heisenberg antiferromagnet KCoF3. By tuning the EUV photon energy to the cobalt M23 edge, a complete set of low-energy 3d spin-orbital excitations is revealed. These low-lying electronic excitations are modeled using an extended multiplet-based mean-field calculation to identify the roles of lattice and magnetic degrees of freedom in modifying the resonant inelastic x-ray scattering (RIXS) spectral line shape. We have demonstrated that the temperature dependence of RIXS features upon the antiferromagnetic ordering transition enables us to probe the energetics of short-range spin correlations in this material

    High-resolution resonant inelastic extreme ultraviolet scattering from orbital and spin excitations in a Heisenberg antiferromagnet

    No full text
    We report a high-resolution resonant inelastic extreme ultraviolet (EUV) scattering study of the quantum Heisenberg antiferromagnet KCoF3_3. By tuning the EUV photon energy to the cobalt M23_{23} edge, a complete set of low-energy 3d spin-orbital excitations is revealed. These low-lying electronic excitations are modeled using an extended multiplet-based mean-field calculation to identify the roles of lattice and magnetic degrees of freedom in modifying the resonant inelastic x-ray scattering (RIXS) spectral line shape. We have demonstrated that the temperature dependence of RIXS features upon the antiferromagnetic ordering transition enables us to probe the energetics of short-range spin correlations in this material
    corecore