398 research outputs found

    Crowded space: a review on radar measurements for space debris monitoring and tracking

    Get PDF
    Space debris monitoring is nowadays a priority for worldwide space agencies, due to the serious threat that these objects present. More and more efforts have been made to extend the network of available radar systems devoted to the control of space. A meticulous review has been done in this paper, in order to find and classify the considerable amounts of data provided by the scientific community that deal with RADAR measurement for the debris monitoring and tracking. The information gathered is organized based on the volume of found data and classified taking into account the geographical location of the facilities

    An in-line coaxial-to-waveguide transition for q-band single-feed-per-beam antenna systems

    Get PDF
    An in-line transition between a coaxial cable and rectangular waveguide operating in Q-band (33–50 GHz) is presented. The aim of the work is to minimize the modifications in the waveguide to the strictly necessary to overcome the manufacturing issues due to the high frequencies involved. In addition, the transition is compact and it does not increase the space occupation on the transverse section, this suggests its application in horn antennas clusters arrangement. The operating principle consists of both a modal conversion and an impedance matching between the devices. The modal conversion is realized in an intermediate region, where the coaxial penetrates in the waveguide: the device geometry is designed so that the electric field in the transition is a trade-off between the TEM mode of the coaxial and the TE10 of the guide. A shaped waveguide backshort and a reactive air gap in the coaxial cable co-participate to achieve the matching. An optimized Chebyshev stepped transformer completes the transition to fulfil the impedance mismatch with the full waveguide. The design issues and technological aspects are considered. The influences of the feeding pin misalignment, the presence of groove is included in the analysis and these practical aspects are discussed and numerically validated via the scattering parameters analysis of the proposed design. The return loss is higher than 25 dB over the whole Q-band

    A multiband proximity-coupled-fed flexible microstrip antenna for wireless systems

    Get PDF
    A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computeraided design software (CAD), CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45GHz) and C-band (5.2GHz), and the Wi-Max 3.5GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°

    WSN hardware for automotive applications: Preliminary results for the case of public transportation

    Get PDF
    The ubiquitous nature and great potential of Wireless Sensors Network has not yet been fully exploited in automotive applications. This work deals with the choice of the cost-effective hardware required to face the challenges and issues proposed by the new trend in the development of intelligent transportation systems. With this aim, a preliminary WSN architecture is proposed. Several commercially available open-source platforms are compared and the Raspberry Pi stood out as a suitable and viable solution. The sensing layer is designed with two goals. Firstly, accelerometric, temperature, and relative humidity sensors were integrated on a dedicated PCB to test if mechanical or environmental stresses during bus rides could be harmful to the device or to its performances. The physical quantities are monitored automatically to alert the driver, thus improving the quality of service. Then, the rationale and functioning of the management and service layer is presented. The proposed cost-effective WSN node was employed and tested to transmit messages and videos, while investigating if any quantitative relationship exists between these operations and the environmental and operative conditions experienced by the hardware

    A New Monitor and Control Power Supply PCB for Biasing LNAs of Large Radio Telescopes Receivers

    Get PDF
    The biasing of low noise amplifiers (LNA) is of paramount importance for the receivers of large radio telescopes. High stability, optimal trade-off between gain and noise figure, remote control, and mitigation of the radio frequency interferences (RFIs) are all desirable features in the choice of the electronic board devoted to power supply the LNAs. In this paper, we propose the design and characterization of a multilayer printed circuit board (PCB), named GAIA, able to meet all the aforementioned requirements. The GAIA board is a 3-Unit, four-layer, rack-mountable, programmable PCB for the remote biasing of the LNAs, with monitor and control capabilities, specifically designed to operate in the receivers of the 64-m diameter Sardinia Radio Telescope (SRT). We describe the architecture, layout, and measurements of the GAIA board. Our results show that the GAIA power supply provides high stability of the output bias voltages and, in comparison with the old analogic biasing board used so far in the SRT receivers, it shows comparable or better frequency stability, other than a remarkable mitigation of the RFIs

    Space Debris Detection in Low Earth Orbit with the Sardinia Radio Telescope

    Get PDF
    Space debris are orbiting objects that represent a major threat for space operations. The most used countermeasure to face this threat is, by far, collision avoidance, namely the set of maneuvers that allow to avoid a collision with the space debris. Since collision avoidance is tightly related to the knowledge of the debris state (position and speed), the observation of the orbital debris is the key of the problem. In this work a bistatic radar configuration named BIRALET (BIstatic RAdar for LEO Tracking) is used to detect a set of space debris at 410 MHz, using the Sardinia Radio Telescope as the receiver antenna. The signal-to-noise ratio, the Doppler shift and the frequency spectrum for each debris are reported

    A wireless sensors network for monitoring the Carasau bread manufacturing process

    Get PDF
    This work copes with the design and implementation of a wireless sensors network architecture to automatically and continuously monitor, for the first time, the manufacturing process of Sardinian Carasau bread. The case of a traditional bakery company facing the challenge of the Food-Industry 4.0 competitiveness is investigated. The process was analyzed to identify the most relevant variables to be monitored during the product manufacturing. Then, a heterogeneous, multi-tier wireless sensors network was designed and realized to allow the real-time control and the data collection during the critical steps of dough production, sheeting, cutting and leavening. Commercial on-the-shelf and cost-effective integrated electronics were employed, making the proposed approach of interest for many practical cases. Finally, a user-friendly interface was provided to enhance the understanding, control and to favor the process monitoring. With the wireless senors network (WSN) we designed, it is possible to monitor environmental parameters (temperature, relative humidity, gas concentrations); cinematic quantities of the belts; and, through a dedicated image processing system, the morphological characteristics of the bread before the baking. The functioning of the WSN was demonstrated and a statistical analysis was performed on the variables monitored during different seasons

    Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders

    Get PDF
    Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders
    • …
    corecore