3,567 research outputs found

    Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production

    Get PDF
    We present an extraction of unpolarized partonic transverse momentum distributions (TMDs) from a simultaneous fit of available data measured in semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production. To connect data at different scales, we use TMD evolution at next-to-leading logarithmic accuracy. The analysis is restricted to the low-transverse-momentum region, with no matching to fixed-order calculations at high transverse momentum. We introduce specific choices to deal with TMD evolution at low scales, of the order of 1 GeV2^2. This could be considered as a first attempt at a global fit of TMDs

    A first determination of the unpolarized quark TMDs from a global analysis

    Get PDF
    Transverse momentum dependent distribution and fragmentation functions of unpolarized quarks inside unpolarized protons are extracted, for the first time, through a simultaneous analysis of semi-inclusive deep-inelastic scattering, Drell-Yan and ZZ boson hadroproduction processes. This study is performed at leading order in perturbative QCD, with energy scale evolution at the next-to-leading logarithmic accuracy. Moreover, some specific choices are made to deal with low scale evolution around 1 GeV2^2. Since only data in the low transverse momentum region are considered, no matching to fixed-order calculations at high transverse momentum is needed.Comment: 10 pages, 6 figures, 1 table; to appear in the Proceedings of the QCD Evolution 2017 Workshop, Newport News, Virginia (USA), 22 - 26 May 201

    Achieving Strategic Flexibility Trough Manufacturing Innovation

    Get PDF

    Structured polymeric microparticles via aerosol cationic photopolymerization

    Get PDF
    Production of polymeric microparticles has gone through an exponential development in the last decades. In particular, the creation of particles with non-full structures is interesting in many applications from medicine to environmental treatments. Still, there are some issues related to the use of those techniques, such as emulsion polymerization, that need a burdensome purification in the downstream processes. In our studies we tried to develop a continuous polymerization process that gives us the possibility to obtain dry structured microparticles using neither surfactants nor a liquid medium. This technique was based on an aerosol photo-induced polymerization. A solution containing the reacting monomer dissolved in a mixture of solvents is sprayed and exposed to UV-light. During the reactor passage, both reaction and phase separation occurred inside the single droplet. By adjusting the amounts and ratios of the solvents it was possible to obtain different structures. Porous particles with various tunable pore shapes and dimensions were obtained. Capsules were obtained with the addition of a co-solvent able to participate with the reaction, delaying the gelation of the structure and, thus, allowing the creation of a polymeric shell in the outer layers of the reacting droplet. As to the applications, we encapsulated an active ingredient within our particles, both porous and core-shell. The active ingredient was curcumin, an anti-inflammatory and anti-oxidant compound. We found that the addition of the active ingredient did not affect the microparticles synthesis; furthermore, the release kinetics investigation showed a slower release in case of porous particles, compared to capsules. However, porous particles were able to release the total amount of curcumin, while capsules released a lower fraction of the active ingredient

    Large Language Models and Explainable Law: a Hybrid Methodology

    Full text link
    The paper advocates for LLMs to enhance the accessibility, usage and explainability of rule-based legal systems, contributing to a democratic and stakeholder-oriented view of legal technology. A methodology is developed to explore the potential use of LLMs for translating the explanations produced by rule-based systems, from high-level programming languages to natural language, allowing all users a fast, clear, and accessible interaction with such technologies. The study continues by building upon these explanations to empower laypeople with the ability to execute complex juridical tasks on their own, using a Chain of Prompts for the autonomous legal comparison of different rule-based inferences, applied to the same factual case
    • …
    corecore