4,336 research outputs found

    An algorithm for the search of homogeneous strain-rate fields

    Get PDF
    The aim of this paper is to describe the theoretical fundamentals and the main features of a software suitably implemented to estimate the strain-rate tensor from continuous GPS data. Current softwares developed for geophysical applications generally estimate or compute bi-dimensional strain, since this is the most requested use. On the contrary, this software allows for a three-dimensional estimate of the strain-rate tensor. It accounts for all the significant GPS velocities and estimates the strain-rate components by the least squares method starting from the hypothesis of one homogeneous strain-rate field. An initial field has to be defined by at least 4 sites which pass the chi-squared test on the strain-rate homogeneity. The developed algorithm automatically searches for sites belonging to this initial homogeneous field, starting from the site nearest to the barycentre of the first 4 sites and proceeding until a user-defined limit distance. Each time a site is added, the homogeneity of the whole field is suitably tested by a number of statistic tests. In this work the algorithm has been also applied to some areas of geophysical interest

    Current geodetic deformation in the South Africa region

    Get PDF
    We present a preliminary velocity field of the African continent derived from continuous GPS observations from 2004 to 2008. The aim of our work is to investigate the strain-rate pattern along the East Africa rift, in particular along the boundary of the two African plates (the Nubian and the Somalian) and in the South Africa region. We have processed GPS data in a time window spanning four years, i.e. from 2004 to 2008, involving IGS, TrigNet (a network of permanent GPS stations distributed throughout South Africa) and other sporadic sites. The GPS data have been processed by means of the Bernese software version 5.0 dividing the entire African network into two clusters. The combination of daily loosely constrained solutions provides the time series of about a hundred of permanent GPS sites mainly located in the African continent. Site velocities together with periodic signals, eventual steps, have been estimated simultaneously using the complete covariance matrices. Finally the velocity field has been expressed in the ITRF2005 reference frame. This investigation gives a preliminary idea of the velocity field and strain-rate pattern we can expect in the South-East Africa region, the observed deformations being barely measurable, below a few mm/year

    On the thermal and double episode emissions in GRB 970828

    Full text link
    Following the recent theoretical interpretation of GRB 090618 and GRB 101023, we here interpret GRB 970828 in terms of a double episode emission: the first episode, observed in the first 40 s of the emission, is interpreted as the proto-black-hole emission; the second episode, observed after t0_0+50 s, as a canonical gamma ray burst. The transition between the two episodes marks the black hole formation. The characteristics of the real GRB, in the second episode, are an energy of Etote+e=1.60×1053E_{tot}^{e^+e^-} = 1.60 \times 10^{53} erg, a baryon load of B=7×103B = 7 \times 10^{-3} and a bulk Lorentz factor at transparency of Γ=142.5\Gamma = 142.5. The clear analogy with GRB 090618 would require also in GRB 970828 the presence of a possible supernova. We also infer that the GRB exploded in an environment with a large average particle density 103 \, \approx 10^3 part/cm3^3 and dense clouds characterized by typical dimensions of (48)×1014(4 - 8) \times 10^{14} cm and δn/n10\delta n/n \propto 10. Such an environment is in line with the observed large column density absorption, which might have darkened both the supernova emission and the GRB optical afterglow.Comment: 7 pages, 10 figures, submitted to Ap

    A common behavior in the late X-ray afterglow of energetic GRB-SN systems

    Full text link
    The possibility to divide GRBs in different subclasses allow to understand better the physics underlying their emission mechanisms and progenitors. The induced gravitational collapse scenario proposes a binary progenitor to explain the time-sequence in GRBs-SNe. We show the existence of a common behavior of the late decay of the X-ray afterglow emission of this subclass of GRBs, pointing to a common physical mechanism of their late emission, consistent with the IGC picture.Comment: 3 pages, to appear in the proceedings of the Gamma-Ray Burst Symposium 2012 - IAA-CSIC - Marbella, editors: Castro-Tirado, A. J., Gorosabel, J. and Park, I.

    Cluster Dynamical Mean-field calculations for TiOCl

    Full text link
    Based on a combination of cluster dynamical mean field theory (DMFT) and density functional calculations, we calculated the angle-integrated spectral density in the layered s=1/2s=1/2 quantum magnet TiOCl. The agreement with recent photoemission and oxygen K-edge X-ray absorption spectroscopy experiments is found to be good. Th e improvement achieved with this calculation with respect to previous single-site DMFT calculations is an indication of the correlated nature and low-dimensionality of TiOCl.Comment: 9 pages, 3 figures, improved version as publishe

    GRB 081024B and GRB 140402A: two additional short GRBs from binary neutron star mergers

    Full text link
    Theoretical and observational evidences have been recently gained for a two-fold classification of short bursts: 1) short gamma-ray flashes (S-GRFs), with isotropic energy Eiso<1052E_{iso}<10^{52}~erg and no BH formation, and 2) the authentic short gamma-ray bursts (S-GRBs), with isotropic energy Eiso>1052E_{iso}>10^{52}~erg evidencing a BH formation in the binary neutron star merging process. The signature for the BH formation consists in the on-set of the high energy (0.10.1--100100~GeV) emission, coeval to the prompt emission, in all S-GRBs. No GeV emission is expected nor observed in the S-GRFs. In this paper we present two additional S-GRBs, GRB 081024B and GRB 140402A, following the already identified S-GRBs, i.e., GRB 090227B, GRB 090510 and GRB 140619B. We also return on the absence of the GeV emission of the S-GRB 090227B, at an angle of 71o71^{\rm{o}} from the \textit{Fermi}-LAT boresight. All the correctly identified S-GRBs correlate to the high energy emission, implying no significant presence of beaming in the GeV emission. The existence of a common power-law behavior in the GeV luminosities, following the BH formation, when measured in the source rest-frame, points to a commonality in the mass and spin of the newly-formed BH in all S-GRBs.Comment: 16 pages, submitted to ApJ, second version addressing the comments by the refere

    Uniform current in graphene strip with zigzag edges

    Full text link
    Graphene exhibits zero-gap massless-Dirac fermion and zero density of states at E = 0. These particles form localized states called edge states on finite width strip with zigzag edges at E = 0. Naively thinking, one may expect that current is also concentrated at the edge, but Zarbo and Nikolic numerically obtained a result that the current density shows maximum at the center of the strip. We derive a rigorous relation for the current density, and clarify the reason why the current density of edge state has a maximum at the center.Comment: 5 pages, 3 figures; added references and corrected typos, to be published in J. Phys. Soc. Jpn. Vol.78 No.
    corecore